AF: Medium: Collaborative research: Advanced algorithms and high-performance software for large scale eigenvalue problems

AF:中:协作研究:大规模特征值问题的先进算法和高性能软件

基本信息

  • 批准号:
    1505970
  • 负责人:
  • 金额:
    $ 36.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-15 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

Scientists and engineers in areas ranging from physics, chemistry, computer science, to economics, and statistics focus considerable attention on computing "eigenvalues" and "eigenvectors" of matrices. They are central to the study of vibrations when building earthquake-resistant structures, to energy computation in solid-state physics, and to ranking web search results. In spite of the enormous progress that has been made in the last few decades in solution methods for large eigenvalue problems, the current state-of-the-art methods remains unsatisfactory when dealing with the new generation of problems that need tens of thousands of eigenvectors for matrices that can have sizes in the tens of millions.In recent years a new class of techniques has emerged that can compute wanted eigenpairs of large matrices by parts. In these methods, 'windows' or 'slices' of the spectrum can be computed independently of one another and orthogonalization between eigenvectors in different slices is no longer necessary. When the number of eigenpairs to be computed is very large this divide-and-conquer approach becomes mandatory because orthogonalizing very large bases is prohibitive. The resulting interior eigenvalue problems arise in a number of other situations and are now considered by the linear algebra community to be among the most challenging numerical problems to solve, and solution methods for handling them are still lagging.The goal of this project is to advance the state of the art in solution methods for interior eigenvalue problems. The main thrust of the project is the development of novel algorithms based on a combination of Krylov or block-Krylov projection techniques and complex rational filters. A starting point in this investigation is the FEAST approach. This project addresses many interesting questions in several areas, starting with methodologies for solving eigenvalue problems, to approximation theory questions for designing rational filter functions, and ending with effective parallel implementations. Methods based on a domain decomposition framework will also be considered to deal with the common situation where the matrix (or pair of matrices in the generalized case) is (are) distributed.The broader impacts of this project highlight the impact on training, the dissemination of new efficient software, and the use of the software by-products in specific applications. All general-purpose codes that are developed under this project will be freely distributed into the public domain. This project will have an impact on the training of graduate and undergraduate students in a field that is vital to the needs of academia, industry, and government laboratories.
从物理学、化学、计算机科学到经济学和统计学等领域的科学家和工程师都非常关注矩阵的“特征值”和“特征向量”的计算。 它们是建造抗震结构时振动研究的核心,也是固态物理学中能量计算的核心,也是网络搜索结果排名的核心。 尽管在过去的几十年里在求解大特征值问题的方法上取得了巨大的进展,目前的状况现有的方法在处理新一代的问题时仍然不能令人满意,这些问题需要成千上万的特征向量,矩阵的大小可以达到数千万。近年来出现了一类新的技术,可以通过以下方式计算所需的大型矩阵的特征对:零件. 在这些方法中,频谱的“窗口”或“切片”可以彼此独立地计算,并且不再需要不同切片中的特征向量之间的正交化。当要计算的特征对的数量非常大时,这种分而治之的方法变得强制性的,因为正交化非常大的基地是禁止的。 由此产生的内部特征值问题出现在许多其他情况下,现在被线性代数界认为是最具挑战性的数值问题之一,解决方法来处理他们仍然滞后。本项目的目标是推进最先进的内部特征值问题的解决方法。该项目的主旨是开发基于Krylov或块Krylov投影技术和复杂的有理滤波器相结合的新算法。本研究的一个出发点是FEAST方法。 这个项目解决了许多有趣的问题,在几个领域,从解决特征值问题的方法,设计合理的滤波器函数的近似理论问题,并与有效的并行实现结束。 基于域分解框架的方法也将被考虑用于处理矩阵(或广义情况下的矩阵对)是分布式的常见情况,该项目的更广泛影响突出了对培训的影响,新的高效软件的传播,以及软件副产品在特定应用中的使用。在这个项目下开发的所有通用代码将免费分发到公共领域。 该项目将对研究生和本科生的培训产生影响,该领域对学术界,工业界和政府实验室的需求至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yousef Saad其他文献

Randomized linear solvers for computational architectures with straggling workers
用于具有落后工人的计算架构的随机线性求解器
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Kalantzis;Yuanzhe Xi;L. Horesh;Yousef Saad
  • 通讯作者:
    Yousef Saad
Efficiently Generalizing Ultra-Cold Atomic Simulations via Inhomogeneous Dynamical Mean-Field Theory from Two- to Three-Dimensions
通过二维到三维的非齐次动态平均场理论有效推广超冷原子模拟
Computing charge densities with partially reorthogonalized Lanczos
  • DOI:
    10.1016/j.cpc.2005.05.005
  • 发表时间:
    2005-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Constantine Bekas;Yousef Saad;Murilo L. Tiago;James R. Chelikowsky
  • 通讯作者:
    James R. Chelikowsky
Algorithms for the evolution of electronic properties in nanocrystals
  • DOI:
    10.1016/j.cpc.2007.02.072
  • 发表时间:
    2007-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    James R. Chelikowsky;Murilo L. Tiago;Yousef Saad;Yunkai Zhou
  • 通讯作者:
    Yunkai Zhou

Yousef Saad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yousef Saad', 18)}}的其他基金

Collaborative Research: Robust Acceleration and Preconditioning Methods for Data-Related Applications: Theory and Practice
协作研究:数据相关应用的鲁棒加速和预处理方法:理论与实践
  • 批准号:
    2208456
  • 财政年份:
    2022
  • 资助金额:
    $ 36.07万
  • 项目类别:
    Standard Grant
Multilevel Graph-Based Methods for Efficient Data Exploration
基于多级图的高效数据探索方法
  • 批准号:
    2011324
  • 财政年份:
    2020
  • 资助金额:
    $ 36.07万
  • 项目类别:
    Standard Grant
Advances in Robust Multilevel Preconditioning Methods for Sparse Linear Systems
稀疏线性系统鲁棒多级预处理方法的进展
  • 批准号:
    1912048
  • 财政年份:
    2019
  • 资助金额:
    $ 36.07万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Effective Numerical Algorithms and Software for Nonlinear Eigenvalue Problems
AF:小型:协作研究:非线性特征值问题的有效数值算法和软件
  • 批准号:
    1812695
  • 财政年份:
    2018
  • 资助金额:
    $ 36.07万
  • 项目类别:
    Standard Grant
Tenth International Conference on Preconditioning Techniques for Scientific and Industrial Applications
第十届科学和工业应用预处理技术国际会议
  • 批准号:
    1735572
  • 财政年份:
    2017
  • 资助金额:
    $ 36.07万
  • 项目类别:
    Standard Grant
Advances in Robust Multilevel Preconditioning Methods for Sparse Linear Systems
稀疏线性系统鲁棒多级预处理方法的进展
  • 批准号:
    1521573
  • 财政年份:
    2015
  • 资助金额:
    $ 36.07万
  • 项目类别:
    Standard Grant
AF: small: Numerical Linear Algebra Methods for Efficient Data Exploration
AF:小:高效数据探索的数值线性代数方法
  • 批准号:
    1318597
  • 财政年份:
    2013
  • 资助金额:
    $ 36.07万
  • 项目类别:
    Standard Grant
Advances in robust multilevel preconditioning methods for sparse linear systems
稀疏线性系统鲁棒多级预处理方法的进展
  • 批准号:
    1216366
  • 财政年份:
    2012
  • 资助金额:
    $ 36.07万
  • 项目类别:
    Standard Grant
Collaborative research: Development of efficient petascale algorithms for inhomogeneous quantum-mechanical systems
合作研究:开发非齐次量子力学系统的高效千万亿级算法
  • 批准号:
    0904587
  • 财政年份:
    2009
  • 资助金额:
    $ 36.07万
  • 项目类别:
    Standard Grant
CDI Type I: Collaborative research: Materials Informatics: Computational tools for discovery and design
CDI I 型:协作研究:材料信息学:用于发现和设计的计算工具
  • 批准号:
    0940218
  • 财政年份:
    2009
  • 资助金额:
    $ 36.07万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 36.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 36.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 36.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402283
  • 财政年份:
    2024
  • 资助金额:
    $ 36.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402852
  • 财政年份:
    2024
  • 资助金额:
    $ 36.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402284
  • 财政年份:
    2024
  • 资助金额:
    $ 36.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402837
  • 财政年份:
    2024
  • 资助金额:
    $ 36.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402835
  • 财政年份:
    2024
  • 资助金额:
    $ 36.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Adventures in Flatland: Algorithms for Modern Memories
合作研究:AF:媒介:平地历险记:现代记忆算法
  • 批准号:
    2423105
  • 财政年份:
    2024
  • 资助金额:
    $ 36.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Sketching for privacy and privacy for sketching
合作研究:AF:中:为隐私而素描和为素描而隐私
  • 批准号:
    2311649
  • 财政年份:
    2023
  • 资助金额:
    $ 36.07万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了