Collaborative Research: Attosecond Charge Dynamics in Atoms and Molecules
合作研究:原子和分子的阿秒电荷动力学
基本信息
- 批准号:1506345
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the late 1800s, flash photography enabled the motion of macroscopic objects to be slowed to the point where the true order of events could be extracted. Nearly a century later, femtosecond pulses (1 femtosecond is one millionth of one billionth of a second) enabled the motions of atoms to be frozen during the formation and breakup of molecules, resulting in an improved microscopic picture of chemistry. The advent of attosecond pulses, a million times shorter, allows the motion of the tiniest building block of matter, the electron, to be stopped in its tracks. Professors Chang, of the University of Central Florida, and Hill, of the University of Maryland, together with their students, use attosecond laser pulses to study electronic charge dynamics on timescales commensurate with its indigenous motion in atomic and molecular systems. Charge migration, as it is known, is central to a variety of important processes such as photosynthesis, radiation damage in biomolecules and photovoltaics used in solar panels. This collaborative project is providing insight into the collective and interactive motion of electrons that are ubiquitous in atoms, molecules and solids. An improved understanding of charge migration will have broad application from controlling the flow of energy within a molecule to tailoring the performance of materials to specific needs.Photoinduced charge separation in molecules is the first step in many chemical processes and central to our understanding of electron correlation and the energy exchange between electronic and nuclear motion responsible for catalysis, photosynthesis, photovoltaics and radiation damage in biomolecules. Comprehensive numerical simulations of complex molecules predict that when an electron is 'suddenly' removed from one end of a chain molecule, such as a small peptide, the hole can move to the other end of the molecule in less than 10 fs, before the electron-nuclear coupling takes place. Intense, isolated attosecond pulses are required to study this naturally-occurring charge migration. Professors Chang and Hill, in a collaborative project between the University of Central Florida (UCF) and the University of Maryland (UMD), exploit the attosecond source at UCF to investigate charge migration in multi-electron atoms (He) and multi-atom molecules (SO2) via attosecond pump - attosecond probe experiments. The pump pulse initiates rapid excitation (in the absence of nuclear motion in the molecular case) while the probe pulse monitors the ensuing charge migration. Two probe techniques are used to 'watch' the charge migration: transient absorption and photoelectron angular distribution. In distinction with previous attosecond studies, where charge migration was investigated in the presence of a strong external infrared field, the UCF-UMD study is probing charge migration subsequent to excitation but in the absence of any external perturbation. As a consequence, this project is providing a clearer understanding of charge separation, energy flow and electron-nuclear charge coupling, which, as stated above, are relevant to a variety of processes associated with chemical reactions, dynamics in condensed matter systems and biological phenomena. A secondary goal of this project is the development of general experimental tools that can be transferred to more complicated systems, such as ABCU (1-azabicyclo [3.3.3] undecane), for which theoretical predictions exist and the excitation spectra fall near those of the model systems of this study.
在19世纪后期,闪光摄影使宏观物体的运动速度减慢到可以提取事件真实顺序的程度。近一个世纪后,飞秒脉冲(1飞秒是十亿分之一秒的百万分之一)使原子的运动在分子形成和分解过程中得以冻结,从而改善了化学的微观图像。阿秒脉冲的出现,比阿秒脉冲短100万倍,使得物质的最小组成部分——电子——的运动停止在它的轨道上。中佛罗里达大学的Chang教授和马里兰大学的Hill教授,以及他们的学生,使用阿秒激光脉冲在与原子和分子系统的固有运动相称的时间尺度上研究电荷动力学。众所周知,电荷迁移是多种重要过程的核心,如光合作用、生物分子的辐射损伤和太阳能电池板中的光伏发电。这个合作项目提供了对原子、分子和固体中无处不在的电子的集体和相互作用运动的洞察。对电荷迁移的更好理解将有广泛的应用,从控制分子内的能量流动到根据特定需求定制材料的性能。光诱导分子中的电荷分离是许多化学过程的第一步,也是我们理解电子相关和电子与核运动之间的能量交换的核心,这些运动负责生物分子的催化、光合作用、光伏发电和辐射损伤。复杂分子的综合数值模拟预测,当一个电子“突然”从链分子的一端(如小肽)移除时,在电子-核耦合发生之前,空穴可以在不到10秒的时间内移动到分子的另一端。研究这种自然发生的电荷迁移需要强烈的、孤立的阿秒脉冲。在中佛罗里达大学(UCF)和马里兰大学(UMD)的合作项目中,Chang教授和Hill教授利用UCF的阿秒源,通过阿秒泵-阿秒探针实验来研究多电子原子(He)和多原子分子(SO2)中的电荷迁移。泵脉冲启动快速激发(在分子中没有核运动的情况下),而探针脉冲监测随后的电荷迁移。两种探针技术用于“观察”电荷迁移:瞬态吸收和光电子角分布。与之前的阿秒研究不同,在阿秒研究中,电荷迁移是在强外部红外场的存在下进行的,UCF-UMD研究是在没有任何外部扰动的情况下探测激发后的电荷迁移。因此,该项目提供了对电荷分离、能量流和电子-核电荷耦合的更清晰的理解,如上所述,这些与化学反应、凝聚态系统动力学和生物现象相关的各种过程有关。该项目的第二个目标是开发可转移到更复杂系统的通用实验工具,例如ABCU (1-azabicyclo[3.3.3]十一烷),该系统存在理论预测,并且激发光谱与本研究的模型系统接近。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zenghu Chang其他文献
Properties of liquid silicon observed by time-resolved x-ray absorption spectroscopy.
通过时间分辨 X 射线吸收光谱观察液态硅的性质。
- DOI:
10.1103/physrevlett.91.157403 - 发表时间:
2003 - 期刊:
- 影响因子:8.6
- 作者:
Steven L. Johnson;P. Heimann;A. M. Lindenberg;Harald O. Jeschke;Martin E. Garcia;Zenghu Chang;R. W. Lee;J. Rehr;Roger Falcone - 通讯作者:
Roger Falcone
常磁性カイラル系における電流誘起磁性の観測
顺磁手性系统中电流感应磁性的观察
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Nariyuki Saito;Nicolas Douguet;Hiroki Sannohe;Nobuhisa Ishii;Teruto Kanai;Yi Wu;Andrew Chew;Seunghwoi Han;Barry I. Schneider;Jeppe Olsen;Luca Argenti;Zenghu Chang;and Jiro Itatani;伊藤哲明 - 通讯作者:
伊藤哲明
Strong-field-induced Electron and Nuclear Dynamics in Nitric Oxide Probed by Attosecond Soft X-ray Absorption Spectroscopy
阿秒软 X 射线吸收光谱探测一氧化氮中的强场诱导电子和核动力学
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Nariyuki Saito;Hiroki Sannohe;Nobuhisa Ishii;Teruto Kanai;Nobuhiro Kosugi;Yi Wu;Andrew Chew;Seunghwoi Han;Zenghu Chang;and Jiro Itatani - 通讯作者:
and Jiro Itatani
The generation, characterization and applications of broadband isolated attosecond pulses
宽带隔离阿秒脉冲的产生、表征及应用
- DOI:
10.1038/nphoton.2013.362 - 发表时间:
2014-02-28 - 期刊:
- 影响因子:32.900
- 作者:
Michael Chini;Kun Zhao;Zenghu Chang - 通讯作者:
Zenghu Chang
Chirp of the single attosecond pulse generated by a polarization gating (6 pages)
- DOI:
10.1103/physreva.71.023813 - 发表时间:
2005-02 - 期刊:
- 影响因子:2.9
- 作者:
Zenghu Chang - 通讯作者:
Zenghu Chang
Zenghu Chang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zenghu Chang', 18)}}的其他基金
Collaborative Research: Probing Attosecond Charge Dynamics in Atoms and Molecules
合作研究:探测原子和分子中的阿秒电荷动力学
- 批准号:
1806575 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: Probing Attosecond Electron Correlation in Atoms
合作研究:探测原子中的阿秒电子相关性
- 批准号:
1068604 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
High order harmonic generation in aligned molecules
排列分子中的高阶谐波产生
- 批准号:
0457269 - 财政年份:2005
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Attosecond Electron Dynamics in Polyatomic Molecules Probed by Water Window X-Rays
合作研究:水窗 X 射线探测多原子分子中的阿秒电子动力学
- 批准号:
2207674 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: Attosecond Electron Dynamics in Polyatomic Molecules Probed by Water Window X-Rays
合作研究:水窗 X 射线探测多原子分子中的阿秒电子动力学
- 批准号:
2207771 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
National Research Council Canada Research Chair In Attosecond Photonics
加拿大国家研究委员会阿秒光子学研究主席
- 批准号:
CRC-2014-00102 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Canada Research Chairs
National Research Council Canada Research Chair in Attosecond Photonics
加拿大国家研究委员会阿秒光子学研究主席
- 批准号:
CRC-2014-00102 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Canada Research Chairs
National Research Council Canada Research Chair in Attosecond Photonics
加拿大国家研究委员会阿秒光子学研究主席
- 批准号:
CRC-2014-00102 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Canada Research Chairs
Collaborative Research: Probing Attosecond Charge Dynamics in Atoms and Molecules
合作研究:探测原子和分子中的阿秒电荷动力学
- 批准号:
1806575 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
National Research Council Canada Research Chair in Attosecond Photonics
加拿大国家研究委员会阿秒光子学研究主席
- 批准号:
CRC-2014-00102 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Canada Research Chairs
Collaborative Research: Probing Attosecond Dynamics in Atoms and Molecules
合作研究:探测原子和分子的阿秒动力学
- 批准号:
1806584 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
National Research Council Canada Research Chair in Attosecond Photonics
加拿大国家研究委员会阿秒光子学研究主席
- 批准号:
CRC-2014-00102 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Canada Research Chairs
National Research Council Canada Research Chair in Attosecond Photonics
加拿大国家研究委员会阿秒光子学研究主席
- 批准号:
CRC-2014-00102 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Canada Research Chairs














{{item.name}}会员




