Speeding up GW quasiparticle calculations to meet the challenge of fast and accurate materials prediction
加速 GW 准粒子计算,应对快速准确材料预测的挑战
基本信息
- 批准号:1506669
- 负责人:
- 金额:$ 32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYDesigning novel materials with desired properties is of vital importance for solving some of the most pressing challenges facing our society in energy and environmental issues. Computational materials design relies on theoretical and computational methods that can reliably predict materials properties within a reasonable time frame for both their lowest-energy state and excited states. Electronic structure methods based on Density Functional Theory are capable of predicting many important lowest-energy state properties, and the so-called "GW method" is by far the most successful and theoretically sound method for predicting excited-state properties of materials. Unfortunately, despite celebrated advances, accurate and efficient predictions of excited-state properties of complex solid systems remain a major challenge. This project supports theoretical and computational research and education that will significantly reduce the computational time and required memory of GW calculations for complex systems such as nanostructures, complex compounds, surfaces, interfaces, and materials containing spatially localized electrons. This will enable fast and accurate predictions for excited-state properties of a significantly wide range of scientifically and technologically important materials.Research will be performed in collaboration with both domestic and international groups. The developed code will first be made available to interested research groups, and then will be released to public after validation and optimization. This project will provide interdisciplinary training in physics, computational materials science, and high performance computing for both graduate and undergraduate students. Such integrated training will greatly broaden students' knowledge base and skill sets in preparation for their future career.TECHNICAL SUMMARYAccurate predictions of excited states properties are critical for computational screening and design of materials for energy and electronics applications. Unfortunately, despite much research effort and celebrated advances, notably the development of first-principles GW methods, accurate and efficient predictions of excited-state properties of solids remain a major challenge. This is particularly true for systems with large unit cells, such as nanostructures, complex multinary compounds, surfaces, interfaces, and materials containing localized electrons due to the unfavorable scaling of the computational cost of GW calculations with respect to the system size.This project supports theoretical and computational research and education which involves the development of several new techniques that will dramatically reduce the computational cost of GW calculations for large complex systems. These new approaches include a) A Fourier filtering technique for drastically reducing the storage and computation cost associated with high-energy states; b) An energy-integration approach for alleviating the burden of explicit band-by-band summation in conventional GW calculations; c) A novel strategy for reducing the computational and memory requirement of the dielectric matrix; and d) Implementation of diagonalization methods that calculate only those eigenstates at or near pre-determined energies for GW calculations. These new approaches, once fully developed and integrated, are expected to result in over two orders of magnitude reduction in computational time and memory requirement for GW calculations on large systems.Research will be performed in collaboration with both domestic and international groups. The developed code will first be made available to interested research groups, and then will be released to public after validation and optimization. This project will provide interdisciplinary training in physics, computational materials science, and high performance computing for both graduate and undergraduate students. Such integrated training will greatly broaden students' knowledge base and skill sets in preparation for their future career.
设计具有理想性能的新材料对于解决我们社会在能源和环境问题上面临的一些最紧迫的挑战至关重要。计算材料设计依赖于理论和计算方法,这些方法可以在合理的时间范围内可靠地预测材料的最低能态和激发态的性质。基于密度泛函理论的电子结构方法能够预测许多重要的最低能态性质,而所谓的“GW方法”是迄今为止预测材料激发态性质最成功和理论上最合理的方法。不幸的是,尽管取得了令人瞩目的进展,但准确有效地预测复杂固体系统的激发态性质仍然是一个重大挑战。该项目支持理论和计算研究和教育,将显著减少复杂系统(如纳米结构、复杂化合物、表面、界面和包含空间定域电子的材料)的计算时间和GW计算所需的内存。这将能够快速准确地预测各种科学和技术上重要材料的激发态特性。研究将与国内和国际团体合作进行。开发的代码将首先提供给感兴趣的研究小组,然后在验证和优化后向公众发布。该项目将为研究生和本科生提供物理学、计算材料科学和高性能计算方面的跨学科培训。这种综合训练将大大拓宽学生的知识基础和技能,为他们未来的职业生涯做准备。技术概述:激发态特性的准确预测对于能源和电子应用材料的计算筛选和设计至关重要。不幸的是,尽管许多研究工作和著名的进展,特别是第一原理GW方法的发展,准确和有效地预测固体的激发态性质仍然是一个主要的挑战。这对于具有大晶胞的系统尤其如此,例如纳米结构、复杂的多化合物、表面、界面和包含局域电子的材料,这是由于GW计算的计算成本相对于系统尺寸的不利缩放。该项目支持理论和计算研究和教育,涉及几种新技术的开发,这些技术将大大降低大型复杂系统的GW计算成本。这些新方法包括a)大幅度降低与高能态相关的存储和计算成本的傅立叶滤波技术;b)一种能量集成方法,以减轻传统GW计算中显式逐带求和的负担;c)一种降低介电矩阵计算和存储需求的新策略;d)实现对角化方法,仅计算GW计算中处于或接近预定能量的特征态。这些新方法一旦完全开发和集成,预计将使大型系统上GW计算的计算时间和内存需求减少两个数量级以上。研究将与国内和国际团体合作进行。开发的代码将首先提供给感兴趣的研究小组,然后在验证和优化后向公众发布。该项目将为研究生和本科生提供物理学、计算材料科学和高性能计算方面的跨学科培训。这种综合训练将大大拓宽学生的知识基础和技能,为他们未来的职业生涯做准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peihong Zhang其他文献
Accurate Band Gap Prediction Based on an Interpretable Δ-Machine Learning
基于可解释的 Δ 机器学习的准确带隙预测
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Lingyao Zhang;Tianhao Su;Musen Li;Fanhao Jia;Shunbo Hu;Peihong Zhang;W. Ren - 通讯作者:
W. Ren
非IgM型淋巴浆细胞淋巴瘤临床及生物学特征研究
非IgM型淋巴结病的特殊生物学研究
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
D. Zou;Shu Yi;Huiming Liu;Zeng;R. Lyu;W. Liu;K. Ru;Peihong Zhang;Huishu Chen;Junyuan Qi;Yaozhong Zhao;Lugui Qiu - 通讯作者:
Lugui Qiu
Clinicopathological studies on bone marrow involvement of mantle cell lymphoma
- DOI:
10.1097/01.pat.0000454441.24672.0a - 发表时间:
2014-01-01 - 期刊:
- 影响因子:
- 作者:
Zhanqi Li;Enbin Liu;Qi Sun;Fujun Sun;Qingying Yang;Peihong Zhang;Kun Ru - 通讯作者:
Kun Ru
Morphology Changes of Both Corona Aged Original and Nano-inorganic Hybrid Polyimide Films Characterized by SEM
SEM表征电晕老化原始薄膜和纳米无机杂化聚酰亚胺薄膜的形貌变化
- DOI:
10.1109/icpadm.2006.284318 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Peihong Zhang;Lingyun Gai;Li Gang;Qingquan Lei - 通讯作者:
Qingquan Lei
Effect of rear wall inclination on cavity acoustic characteristics at high Mach numbers
后壁倾角对高马赫数空腔声学特性的影响
- DOI:
10.1088/1742-6596/2252/1/012007 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yin Tang;Lei Luo;Peihong Zhang;M. Ma - 通讯作者:
M. Ma
Peihong Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peihong Zhang', 18)}}的其他基金
CAREER:Excited States Properties of Semiconductors and Nanostructures: Methodology Developments, Practical Applications, and Education
职业:半导体和纳米结构的激发态特性:方法开发、实际应用和教育
- 批准号:
0946404 - 财政年份:2010
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
SGER: Chemical Frustration and the Design of New Hydrogen Storage Materials
SGER:化学挫败与新型储氢材料的设计
- 批准号:
0844720 - 财政年份:2008
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
相似国自然基金
“Bottom-up”策略构筑金属纳米粒子-多孔有机聚合物复合催化材料
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
碳锰双功能催化剂低温协同脱除烧结烟气NOx与UP-POPs研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于MS/MS和UP-MMCA的新生儿甲基丙二酸血症二阶筛查新方法构建与临床应用研究
- 批准号:82101824
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
简便快速bottom-up法制备含氮空位中心的纳米金刚石晶体
- 批准号:
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
长效GnRHa“flare-up”效应通过AMPK通路抑制子宫腺肌症患者卵泡发育的机制
- 批准号:81801418
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于MOFs衍生的多孔纳米复合金属氧化物的制备及其低温催化降解UP-POPs机理研究
- 批准号:21777159
- 批准年份:2017
- 资助金额:64.0 万元
- 项目类别:面上项目
几类非Kahler复流形的研究
- 批准号:11701414
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
几类非散度型方程解的性质研究
- 批准号:11601140
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
非均匀介质中非线性拋物型方程的奇性分析
- 批准号:11501076
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
具非线性梯度项的Monge-Ampere方程的大解
- 批准号:11571295
- 批准年份:2015
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Scaling-Up plant based Nanocarriers for BIOpharmaceuticals (SUNBIO)
用于生物制药的植物纳米载体的放大(SUNBIO)
- 批准号:
EP/Z53304X/1 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Research Grant
Investigating the acceptability and accuracy of cervical screening and self-sampling in postnatal women to coincide with the 6-week postnatal check-up
调查产后妇女进行宫颈筛查和自我采样以配合产后 6 周检查的可接受性和准确性
- 批准号:
MR/X030776/1 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Research Grant
Scaling-up co-designed adolescent mental health interventions
扩大共同设计的青少年心理健康干预措施
- 批准号:
MR/Y020286/1 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Fellowship
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
The mechanism of CELF1 upregulation and its role in the pathogenesis of Myotonic Dystrophy Type 1
CELF1上调机制及其在强直性肌营养不良1型发病机制中的作用
- 批准号:
10752274 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
An Integrated Model of Contextual Safety, Social Safety, and Social Vigilance as Psychosocial Contributors to Cardiovascular Disease
情境安全、社会安全和社会警惕作为心血管疾病社会心理因素的综合模型
- 批准号:
10749134 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
GP-UP Ocean Research College Academy Engagement in Authentic Geoscience Learning Ecosystems (ORCA-EAGLE)
GP-UP 海洋研究学院学院参与真实的地球科学学习生态系统 (ORCA-EAGLE)
- 批准号:
2326962 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
CAREER: A Bottom Up pAproach Toward Understanding the Sunlight Driven Mechanisms and Pathways for the Release of Metals from Petroleum.
职业:一种自下而上的方法来了解阳光驱动的机制和从石油中释放金属的途径。
- 批准号:
2340743 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Collaborative Research: Physical Feedbacks in the Coastal Alaskan Arctic during Landfast Ice Freeze-up
合作研究:阿拉斯加北极沿海地区陆地冰冻期间的物理反馈
- 批准号:
2336694 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Standard Grant