Characterization of Atomic Diffusion during Ion Exchange Reactions
离子交换反应过程中原子扩散的表征
基本信息
- 批准号:1507753
- 负责人:
- 金额:$ 56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research program, Dr. Richard Robinson of Cornell University is supported by the Macromolecular, Supramolecular and Nanochemistry (MSN) program to investigate the fundamental chemical principles governing chemical transformations of nanoparticles using advanced experimental methods including in-situ x-ray absorption spectroscopy (XAS). When scientists study materials that are very, very small (so-called "nanoparticles") they find that the properties are radically different from bulk properties. One of the surprising differences in nanoparticles is that the atoms can rearrange themselves much faster and easier than expected. Chemists have taken advantage of this effect to modify nanoparticles through chemical transformation reactions. These chemical transformation reactions have opened up exciting new opportunities because they offer the ability to independently manipulate the size, shape, atomic structure, or chemical composition in nanoparticles, overcoming limitations of conventional synthesis techniques. In this project, Dr. Richard Robinson is investigating one type of chemical transformation, the ion exchange reaction, by using an advanced experimental method called x-ray absorption spectroscopy (XAS). XAS enables the precise measurement of the local environment around an atom and thereby helps discover how the atomic lattice changes during the ion exchange reaction. To understand why the ion exchange process is orders of magnitude faster in nanomaterials than in bulk materials, Dr. Robinson is investigating key phenomena such as the size dependence of diffusion in nanoparticles and the stoichiometry and stability of the atomic phase (crystal lattice) during transformation. By learning how to manipulate nanoparticles through chemical transformations, this project is benefiting society by creating a toolkit to tailor nanoparticles for advanced applications in areas such as electronics, catalysis, and photovoltaics. The project broadly impacts chemistry by spurring new synthetic approaches to nanoparticles with novel composition and structure. Dr. Robinson is developing an outreach module that teaches students about nanomaterial properties. Dr. Robinson is training high school teachers to use the "nano demo" kit and is making the kit available through a lending library. Dr. Robinson's local and regional outreach efforts include mentoring graduate students through the Sloan Diversity Fellows Program, and involving undergraduates in research activities.Ion exchange reactions, a subset of the chemical transformation reactions, are a powerful method to atomically restructure the composition and phase of first-generation (as-synthesized) nanoparticles. What is currently unknown is how ion dynamics behave differently at the nanoscale than at bulk scales. The key challenges to understanding the ion exchange process include characterizing the size dependence of diffusion in nanoparticles, the influence of reaction kinetics on the ion dynamics, and the stoichiometry and stability of the atomic phase (crystal lattice) during transformation. To investigate these challenges, Dr. Robinson is performing in-situ and ex-situ XAS of nanoparticles during cation and anion exchange, and mapping the movements of the ions and the atomic structure. By combining time-resolved XAS, long-range order characterization, and elemental analysis, Dr. Robinson is characterizing the governing atomic dynamics, the dynamic changes in oxidation states, and the coordination chemistry that occurs during ion exchange in nanoparticles. Dr. Robinson is exploiting these reactions to create advanced nano-heterostructures, metastable phases, and doped nanoparticles. By understanding how to manipulate nanoparticles through chemical transformations, this project benefits society by creating a toolkit to tailor nanoparticles for advanced applications in areas such as electronics, catalysis, and photovoltaics.
在这项研究计划中,康奈尔大学的Richard罗宾逊博士得到了大分子、超分子和纳米化学(MSN)计划的支持,利用先进的实验方法,包括原位X射线吸收光谱(XAS),研究了纳米颗粒化学转化的基本化学原理。 当科学家们研究非常非常小的材料(所谓的“纳米颗粒”)时,他们发现这些材料的性质与整体性质完全不同。 纳米粒子的一个令人惊讶的区别是,原子可以比预期更快更容易地重新排列自己。化学家们利用这种效应通过化学转化反应来修饰纳米颗粒。 这些化学转化反应开辟了令人兴奋的新机会,因为它们提供了独立操纵纳米颗粒的大小,形状,原子结构或化学组成的能力,克服了传统合成技术的局限性。 在这个项目中,理查德罗宾逊博士正在研究一种类型的化学转化,离子交换反应,通过使用先进的实验方法称为X射线吸收光谱(XAS)。 XAS能够精确测量原子周围的局部环境,从而有助于发现离子交换反应期间原子晶格的变化。 为了理解为什么纳米材料中的离子交换过程比块体材料快几个数量级,罗宾逊博士正在研究关键现象,如纳米颗粒中扩散的尺寸依赖性以及转变过程中原子相(晶格)的化学计量和稳定性。 通过学习如何通过化学转化来操纵纳米粒子,该项目通过创建一个工具包来为电子、催化和光化学等领域的高级应用定制纳米粒子,从而造福社会。该项目通过刺激具有新组成和结构的纳米颗粒的新合成方法来广泛影响化学。罗宾逊博士正在开发一个外展模块,教学生有关纳米材料的属性。罗宾逊博士正在培训高中教师使用“纳米演示”工具包,并通过一个借阅图书馆提供该工具包。罗宾逊博士在当地和地区的推广工作包括通过斯隆多样性研究员计划指导研究生,并让本科生参与研究活动。离子交换反应是化学转化反应的一个子集,是一种强有力的方法,可以从原子上重组第一代(合成后的)纳米颗粒的组成和相。目前尚不清楚的是,离子动力学在纳米尺度下的行为与在体尺度下的行为有何不同。理解离子交换过程的关键挑战包括表征纳米颗粒中扩散的尺寸依赖性,反应动力学对离子动力学的影响,以及转化过程中原子相(晶格)的化学计量和稳定性。为了研究这些挑战,罗宾逊博士正在阳离子和阴离子交换过程中对纳米颗粒进行原位和非原位XAS,并绘制离子和原子结构的运动图。通过结合时间分辨XAS、长程有序表征和元素分析,罗宾逊博士正在表征纳米颗粒中离子交换过程中的原子动力学、氧化态的动态变化和配位化学。罗宾逊博士正在利用这些反应来创造先进的纳米异质结构,亚稳相和掺杂纳米粒子。通过了解如何通过化学转化来操纵纳米粒子,该项目通过创建一个工具包来为电子,催化和光化学等领域的高级应用定制纳米粒子,从而使社会受益。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multiscale hierarchical structures from a nanocluster mesophase
- DOI:10.1038/s41563-022-01223-3
- 发表时间:2022-04-14
- 期刊:
- 影响因子:41.2
- 作者:Han, Haixiang;Kallakuri, Shantanu;Robinson, Richard D.
- 通讯作者:Robinson, Richard D.
X-ray emission spectroscopy: an effective route to extract site occupation of cations
- DOI:10.1039/c8cp04628j
- 发表时间:2018-12-14
- 期刊:
- 影响因子:3.3
- 作者:Bhargava, Anuj;Chen, Cindy Y.;Robinson, Richard D.
- 通讯作者:Robinson, Richard D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Robinson其他文献
Lesion Network Mapping: Discovering the Common Circuits Underlying Neurologic Mysteries
病变网络图谱:发现神经系统奥秘背后的常见回路
- DOI:
10.1097/01.nt.0000576908.13815.6c - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Richard Robinson - 通讯作者:
Richard Robinson
NEW HAPMAP WILL SPEED GENE DISCOVERY FOR COMPLEX NEUROLOGIC DISEASES
新的单体型图将加速复杂神经系统疾病的基因发现
- DOI:
10.1097/00132985-200601030-00009 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Richard Robinson - 通讯作者:
Richard Robinson
Biodiversity monitoring informs forest management in south-west Western Australia: Ten-year findings of span class="small-caps"Forestcheck/span
生物多样性监测为西澳大利亚西南部的森林管理提供信息:《森林检查》十年研究成果
- DOI:
10.1016/j.foreco.2022.120659 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:3.700
- 作者:
Richard Robinson;Lachlan McCaw;Allan Wills - 通讯作者:
Allan Wills
Six legs good
- DOI:
10.1186/gb-spotlight-20030321-01 - 发表时间:
2003-01-01 - 期刊:
- 影响因子:9.400
- 作者:
Richard Robinson - 通讯作者:
Richard Robinson
Metagenomic Next-Generation Sequencing Moves Toward Clinical Use in Neuroinfectious Disease
宏基因组下一代测序迈向神经传染病的临床应用
- DOI:
10.1097/01.nt.0000578012.64135.4c - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Richard Robinson - 通讯作者:
Richard Robinson
Richard Robinson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Robinson', 18)}}的其他基金
Deciphering and Directing Hierarchical Self-Assembly in Hybrid Chiral Films
破译和指导混合手性薄膜中的分层自组装
- 批准号:
2344586 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
MCA: Scalable Nanomanufacturing of Earth-Abundant Electrochromics
MCA:地球上丰富的电致变色材料的可扩展纳米制造
- 批准号:
2120947 - 财政年份:2022
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Geometric Frustration in Isomerizations of Magic Sized Clusters
神奇尺寸团簇异构化中的几何挫败
- 批准号:
2003586 - 财政年份:2021
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Electrophoretic Deposition of Ternary Metal Sulfide Electrochemical Electrodes with Tunable Pore Structure
电泳沉积孔结构可调的三元金属硫化物电化学电极
- 批准号:
1941135 - 财政年份:2020
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Origins of Unique Optical Properties in Intermediate Band Nanocrystals
中带纳米晶体独特光学性质的起源
- 批准号:
2003431 - 财政年份:2020
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
NSF/DMR-BSF: The Effects of Configurational Disorder on Polaron Transport
NSF/DMR-BSF:构型无序对极化子传输的影响
- 批准号:
1809429 - 财政年份:2018
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
SNM: Scalable Production and Processing of High-Quality Metal Sulfide Nanoparticles into Energy Storage and Capture Devices
SNM:将高质量金属硫化物纳米颗粒大规模生产和加工成能量存储和捕获设备
- 批准号:
1344562 - 财政年份:2013
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Chemical Transformations of Nanoparticles for Isolation of Metastable Phases
用于分离亚稳相的纳米粒子的化学转化
- 批准号:
1152922 - 财政年份:2012
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
CAREER: Nanoscale Phonon Spectrometer to Quantitatively Characterize Low-Dimensional Heat Transfer
职业:纳米级声子能谱仪定量表征低维传热
- 批准号:
1149036 - 财政年份:2012
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
Dissertation Enhancement in Japan: A Japanese/U.S. Comparison of Technology Transfer: The Adoption of Science by the Computer Integrated Manufacturing Industry
日本的论文强化:日本/美国
- 批准号:
9402644 - 财政年份:1994
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
相似海外基金
Thermo-Mechanical Separation by Atomic Diffusion for Refinement and Recycling of Alloys
通过原子扩散进行热机械分离,用于合金的精炼和回收
- 批准号:
2311311 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Development of an absorption cell by atomic diffusion bonding
通过原子扩散键合开发吸收池
- 批准号:
20K14550 - 财政年份:2020
- 资助金额:
$ 56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Single crystal nanowhiskers by stress-induced atomic diffusion using multi-layer metal nanostructures
使用多层金属纳米结构通过应力诱导原子扩散制备单晶纳米晶须
- 批准号:
20K20959 - 财政年份:2020
- 资助金额:
$ 56万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Investigation of atomic diffusion on magnetic materials
磁性材料上原子扩散的研究
- 批准号:
19K15315 - 财政年份:2019
- 资助金额:
$ 56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of Real-Time Observation During Stress Formation via Atomic Diffusion And Analysis of the Mechanism
原子扩散应力形成过程实时观测及机理分析的发展
- 批准号:
18K04785 - 财政年份:2018
- 资助金额:
$ 56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Atomic scale diffusion dynamics of hydrogen in deep-Earth minerals by pulsed neutron scattering
通过脉冲中子散射研究地球深部矿物中氢的原子尺度扩散动力学
- 批准号:
17F17331 - 财政年份:2017
- 资助金额:
$ 56万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of ion-assisted surface diffusion polishing method to flatten diamond surfaces in atomic level
开发离子辅助表面扩散抛光方法以在原子水平上平整金刚石表面
- 批准号:
16K14124 - 财政年份:2016
- 资助金额:
$ 56万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Atomic diffusion in defect fields in mantle minerals
地幔矿物缺陷场中的原子扩散
- 批准号:
15H03750 - 财政年份:2015
- 资助金额:
$ 56万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of fatigue crack healing technology in metallic materials by atomic diffusion and elucidation of healing mechanism
金属材料疲劳裂纹原子扩散愈合技术的发展及愈合机制的阐明
- 批准号:
15K05694 - 财政年份:2015
- 资助金额:
$ 56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CuO Nanostructure Fabrication based on Complex Utilization of Atomic Diffusion and Environmental Control
基于原子扩散和环境控制综合利用的 CuO 纳米结构制造
- 批准号:
25889009 - 财政年份:2013
- 资助金额:
$ 56万 - 项目类别:
Grant-in-Aid for Research Activity Start-up