CDS&E: Formalisms and Tools for Data-enabled Turbulence Modeling

CDS

基本信息

项目摘要

The goal of the proposed research is to devise rigorous mathematical techniques that utilize large databases obtained by simulations to develop predictive models of turbulent flow. Even though the proposal is focused on turbulence, the tools to be developed will be of general applicability for data-driven modeling in other areas of science and engineering. Predictive models have not yet taken full advantage of the massive amounts of data being generated by the fluids community. New strategies are needed to extract information and modeling knowledge from data. Adjoint-driven inverse problems will be invoked to extract relevant modeling information from data. An important aspect of this approach is that the data is processed in the context in which it is needed for prediction. Domain-specific machine learning techniques will be used to convert information to modeling knowledge. In essence, the inverse solution infers functional deficiencies in the model and machine learning is used to reconstruct the missing functional form. The co-PIs plan to investigate how to identify and formulate a properly-posed data-driven-turbulence-modeling problem, the implications that these approaches have in more general data-driven computational physics applications, and the most effective ways to use machine learning in a predictive physics setting. Applications to be explored include transition to turbulence, thermal transport, and near-wall turbulent stress closures. The proposed work is expected to result in improved closure models for Reynolds-Averaged as well as hybrid Reynolds-Averaged/Large Eddy simulations. While the focus of the proposed work is on turbulent flow applications, several aspects of the formulation and tools will be of more general value to the field of data-driven physical modeling. Educational activities that would integrate machine learning into fluid dynamics courses are proposed. Tools and technologies will be shared with the community and the industry
拟议研究的目标是设计严格的数学技术,利用模拟获得的大型数据库来开发湍流的预测模型。尽管该提案的重点是湍流,但要开发的工具将普遍适用于其他科学和工程领域的数据驱动建模。预测模型尚未充分利用流体社区产生的大量数据。需要新的策略来从数据中提取信息和建模知识。伴随驱动的逆问题将被调用来从数据中提取相关的建模信息。这种方法的一个重要方面是,数据是在预测所需的上下文中处理的。特定领域的机器学习技术将用于将信息转换为建模知识。本质上,逆解推断模型中的功能缺陷,机器学习用于重建缺失的功能形式。co-PI计划研究如何识别和制定一个适当的数据驱动的随机建模问题,这些方法在更一般的数据驱动的计算物理应用中的影响,以及在预测物理环境中使用机器学习的最有效方法。待探讨的应用包括过渡到湍流,热传输,近壁湍流应力封闭。拟议的工作,预计将导致改进的封闭模型,平均以及混合的平均/大涡模拟。虽然所提出的工作的重点是湍流的应用,制定和工具的几个方面将更普遍的价值,以数据驱动的物理建模领域。提出了将机器学习融入流体动力学课程的教育活动。工具和技术将与社区和行业共享

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karthikeyan Duraisamy其他文献

Functional Evaluation of the Behavior of Masticatory Muscles in Zygomaticomaxillary Complex Fracture: A Prospective Study.
颧上颌复合骨折中咀嚼肌行为的功能评估:一项前瞻性研究。
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Srimathi Panchanathan;Maya Saranathan;A. Kamalakaran;Karthikeyan Duraisamy
  • 通讯作者:
    Karthikeyan Duraisamy
Kinematic Synthesis for Smart Hand Prosthesis
智能手假肢的运动学合成
Lipshitz-continuous tensor-basis neural networks for turbulence modeling in hypersonic flows
用于高超声速流湍流建模的 Lipshitz 连续张量神经网络
  • DOI:
    10.2514/6.2024-0070
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eric Parish;David Ching;Nathan E. Miller;Steven Beresh;Matthew F. Barone;Niloy Gupta;Karthikeyan Duraisamy
  • 通讯作者:
    Karthikeyan Duraisamy

Karthikeyan Duraisamy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karthikeyan Duraisamy', 18)}}的其他基金

MRI: Acquisition of Conflux, A Novel Platform for Data-Driven Computational Physics
MRI:收购数据驱动计算物理的新平台 Conflux
  • 批准号:
    1531752
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

SHF: Small: Formalisms, Implementations, and Verification Procedures for Alternatives to Floating Point
SHF:小:浮点替代方案的形式主义、实现和验证程序
  • 批准号:
    1908798
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
"Belief change in rational agents (with application to action formalisms, ontologies, and inferentially weak systems)"
“理性主体的信念改变(应用于行动形式主义、本体论和推理弱系统)”
  • 批准号:
    884-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling the Design of Failure-Tolerant Complex Engineered Systems using New Network-Based Modeling, Analysis, and Simulation Formalisms
使用新的基于网络的建模、分析和仿真形式实现容错复杂工程系统的设计
  • 批准号:
    1562027
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
"Belief change in rational agents (with application to action formalisms, ontologies, and inferentially weak systems)"
“理性主体的信念改变(应用于行动形式主义、本体论和推理弱系统)”
  • 批准号:
    884-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
"Belief change in rational agents (with application to action formalisms, ontologies, and inferentially weak systems)"
“理性主体的信念改变(应用于行动形式主义、本体论和推理弱系统)”
  • 批准号:
    884-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient statistical parsing and decoding for expressive grammar formalisms based on tree automata
基于树自动机的表达语法形式的高效统计解析和解码
  • 批准号:
    252303250
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grants
"Belief change in rational agents (with application to action formalisms, ontologies, and inferentially weak systems)"
“理性主体的信念改变(应用于行动形式主义、本体论和推理弱系统)”
  • 批准号:
    884-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
"Belief change in rational agents (with application to action formalisms, ontologies, and inferentially weak systems)"
“理性主体的信念改变(应用于行动形式主义、本体论和推理弱系统)”
  • 批准号:
    884-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Tool support for relational formalisms in programming and specification
编程和规范中关系形式主义的工具支持
  • 批准号:
    262144-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Physics Based Formalisms and Modeling Methods for Nonlinear and Nonequilibrium Quantum Transport of Realistic Nanoelectronic Devices
基于量子物理的现实纳米电子器件非线性和非平衡量子输运的形式主义和建模方法
  • 批准号:
    409126-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了