Nanoparticle Monolayer Membranes
纳米颗粒单层膜
基本信息
- 批准号:1508110
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARY:Nanoparticles offer special opportunities for the design of advanced, next-generation materials. This project investigates the ultimate limit of such nanoparticle-based materials, when their thickness is reduced to that of just one particle. In this limit, single layers (monolayers) of closely packed nanoparticles combine extreme flexibility with remarkable strength. The research exploits these desirable mechanical properties to develop nanoparticle membranes for covering corrugated or porous surfaces and for novel coatings. The availability of highly conforming, ultrathin membranes has the potential to open up a wide range of new applications, including in nanofiltration. The project provides a natural platform for integrating research with training and outreach. It will train one postdoc and one graduate student in vital nanoscience know-how, and during the summer months introduce undergraduates to forefront science. In collaboration with a major science museum, the project will develop and prototype small-scale, hands-on activities for exhibits and demonstrations to the general public.TECHNICAL SUMMARY:This project focuses on a new class of ultra-thin membranes, fabricated from single layers of close-packed metallic nanoparticles, each particle surrounded by a thin coat of short organic molecules (ligands) that act as inter-particle spacers. The membranes are self-assembled in a single processing step from solution onto a solid substrate and can drape themselves over open holes that are hundreds to thousands of nanoparticles wide. The resulting freestanding membranes can be cut and manipulated by ion and electron beams, and they can be rolled up into tubular structures. Monolayer membranes make it possible to investigate the material properties of large assemblies of nanoscale building blocks without interference from a substrate, and at the same time allow for direct experimental access, via a range of probes such as electron or scanning probe microscopies, to the individual building blocks themselves. The research consists of three closely related experimental efforts that investigate different aspects of the mechanical behavior of the membranes. The first investigates the elastic response of hollow tubular structures formed from rolled-up membranes. Its goal is to identify the origin of the large bending stiffness that exceeds predictions based on standard continuum elasticity by up to two orders of magnitude. The second studies the mechanical response in the regime beyond elastic deformation and investigates how details of the local particle-molecule arrangements affect the onset of yielding and fracture in flat membranes as well as tubular structures. The third explores the use of nanoparticle membranes in new applications such as "shrink-wrapping" of surface features for plasmonic amplification and coating of porous substrates for nanofiltration.
非技术总结:纳米颗粒为设计先进的下一代材料提供了特殊的机会。 该项目研究了这种基于纳米颗粒的材料的极限,当它们的厚度减少到只有一个颗粒时。 在这个极限下,单层(单层)紧密堆积的纳米颗粒联合收割机结合了极高的柔韧性和显著的强度。 该研究利用这些理想的机械性能来开发纳米颗粒膜,用于覆盖波纹或多孔表面以及新型涂层。高度一致的超薄膜的可用性有可能开辟广泛的新应用,包括纳米过滤。该项目为将研究与培训和外联结合起来提供了一个自然平台。它将培训一名博士后和一名研究生掌握重要的纳米科学知识,并在夏季向本科生介绍前沿科学。该项目将与一家大型科学博物馆合作,开发和原型化小规模的实践活动,用于向公众展示和演示。技术概要:该项目的重点是一类新的超薄膜,由单层紧密堆积的金属纳米颗粒制成,每个颗粒周围都有一层薄薄的短有机分子(配体),作为颗粒间的间隔物。 这些膜在一个单一的处理步骤中从溶液自组装到固体基底上,并且可以将自己覆盖在数百到数千个纳米颗粒宽的开孔上。由此产生的独立膜可以通过离子束和电子束切割和操纵,并且它们可以卷成管状结构。单层膜使得研究纳米级构建块的大型组件的材料特性而不受衬底的干扰成为可能,并且同时允许通过一系列探针(例如电子或扫描探针显微镜)直接实验访问单个构建块本身。该研究由三项密切相关的实验工作组成,旨在研究膜机械行为的不同方面。第一个调查的弹性响应的中空管状结构形成的卷起的膜。其目标是确定大弯曲刚度的来源,该刚度超过基于标准连续弹性的预测高达两个数量级。第二个研究的机械响应的制度超越弹性变形和调查的细节,当地的颗粒分子的安排如何影响发病的屈服和断裂的平膜以及管状结构。第三个探讨了纳米粒子膜在新的应用中的使用,例如等离子体放大的表面特征的“收缩包装”和纳米过滤的多孔基底的涂层。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heinrich Jaeger其他文献
Heinrich Jaeger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Heinrich Jaeger', 18)}}的其他基金
Acoustic Forces and Active Fluctuations in Levitated Granular Matter
悬浮颗粒物质中的声力和主动波动
- 批准号:
2104733 - 财政年份:2021
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Ultrasonically Levitated Granular Matter
超声波悬浮颗粒物质
- 批准号:
1810390 - 财政年份:2018
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
New Approaches for the Design of Particulate Media
颗粒介质设计的新方法
- 批准号:
1605075 - 财政年份:2016
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
2016 Frontiers in Particle Science & Technology Conference
2016年粒子科学前沿
- 批准号:
1623943 - 财政年份:2016
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Clustering and Charging in Granular Flows
颗粒流中的聚类和充电
- 批准号:
1309611 - 财政年份:2013
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Granular Materials Design and Optimization
颗粒材料设计与优化
- 批准号:
1334426 - 财政年份:2013
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Mechanical Properties of Freestanding Nanoparticle Sheets
独立式纳米颗粒片的机械性能
- 批准号:
1207204 - 财政年份:2012
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Investigation of Freestanding Nanoparticle Sheets
独立式纳米颗粒片的研究
- 批准号:
0907075 - 财政年份:2009
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Freely-Falling Granular Powder Streams as Sensitive Probes of Interparticle Forces
自由落体颗粒粉末流作为颗粒间力的敏感探针
- 批准号:
0933242 - 财政年份:2009
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
SGER: Tuning the Conductance of Nanoparticle Arrays
SGER:调整纳米颗粒阵列的电导
- 批准号:
0751473 - 财政年份:2007
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
相似海外基金
Observing, Creating and Addressing Topological Spin Textures in a Monolayer XY Magnet
观察、创建和解决单层 XY 磁体中的拓扑自旋纹理
- 批准号:
EP/Y023250/1 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Research Grant
Development of Metal Nanoparticle Catalysts Decorated by Inorganic Monolayer Nanosheets and Its Application for Green Chemical Processes
无机单层纳米片修饰金属纳米粒子催化剂的研制及其在绿色化工过程中的应用
- 批准号:
23H02005 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Observing, Creating and Addressing Topological Spin Textures in a Monolayer XY Magnet
观察、创建和解决单层 XY 磁体中的拓扑自旋纹理
- 批准号:
2883379 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Studentship
Realization of kagome-lattice monolayer quantum materials by topotactic reactions of ultrathin films
超薄膜拓扑反应实现戈薇晶格单层量子材料
- 批准号:
23H01830 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Three-dimensional Confocal Microscopy Visualization and AFM-IR Chemical Mapping of Lung Surfactant Monolayer Collapse Morphologies
肺表面活性剂单层塌陷形态的三维共焦显微镜可视化和 AFM-IR 化学图谱
- 批准号:
10751972 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Development of stable intermediates for handling by hydrogenation of monolayer germanene
开发用于单层锗烯氢化处理的稳定中间体
- 批准号:
23H01811 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Emergent oscillation and ordered structure of active epithelial monolayer induced by topographic landscape
地形景观诱导的活性上皮单层的突现振荡和有序结构
- 批准号:
23H01144 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exciton dynamics in monolayer materials revealed by direct observation of dark exciton states
通过直接观察暗激子态揭示单层材料中的激子动力学
- 批准号:
22K20354 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Where 2D meets ML: Defects and Reaction Kinetics at the atomic monolayer limit
2D 与 ML 的结合:原子单层极限下的缺陷和反应动力学
- 批准号:
2749169 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Studentship
CAREER: Probing exciton-exciton correlations and phase transitions for spin-polarized excitons in monolayer transition metal dichalcogenides
职业:探索单层过渡金属二硫化物中自旋极化激子的激子-激子相关性和相变
- 批准号:
2142703 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant