Identifying Generation and Emission Sources for Individual Loads at Specific Locations and Times: Toward Environmentally Sensitive and Guided Electricity Usage
识别特定地点和时间单个负载的发电和排放源:实现环境敏感和引导用电
基本信息
- 批准号:1508910
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Climate change due to greenhouse gas (GHG) emissions has become one of the most challenging issues in human society. In the U.S., electric power generation contributes about 40 % of the total GHG, 64% of SO2 emissions, 16% of NOx emissions, and 68% of mercury air emissions as well as large shares of other pollutants (such as small particulates) in 2010. It is then critically important to correctly account for emissions related to electricity generation, delivery and consumption. The emissions can be monitored and measured directly at the power plants. However, it has been called "impossible" to trace the emissions associated with electricity consumption back to generation sources. Because of this daunting difficulty, an accurate life-cycle analysis of electricity generation and usage cannot be done so far while such analysis is important to various products and processes including GHG inventories of different entities and regions. Moreover, it has also been very challenging or impossible to carry out clear and unequivocal cost and usage allocation analysis to equally share the benefit and responsibility for all entities involved in electricity generation and delivery. The importance of equity can never be overstated when designing and implementing public policy and engineering practices for interconnected power systems that include numerous generators and cover a vast area. The proposed research work will develop the right tools to link loads and generation/emission sources, to carry out effective cost and benefit analyses, and to help develop appropriate electric energy and environmental related policies to share responsibility among different entities, and ultimately maintain transparency, equity and fairness in electric power industry. The developed methods will facilitate active customer participation and help electricity users make informed choices. This project will also help advance technology and workforce development in electric power sector, which is critical to our whole nation and future sustainable electric energy development and usage.The goal of this research is to develop "disruptive" methods for real-time identification of generation and emission sources of any individual load at specific location and time. The following approach is taken: (1) A transformative, equivalent circuit model will be developed for power systems. A power system can be represented by the proposed transfer impedance based system equivalent model, which is transformative and can be used for other general circuit analyses; (2) A "disruptive" method will be developed to identify the generation sources of the total demand of individual loads at specific locations and times based on the equivalent model and phasor measurement unit or system state estimation data; (3) A novel method will be developed to identify marginal generators due to incremental demand changes based on publically available information; (4) Not only the locational marginal emissions but also the overall emissions will be accurately quantified for individual loads; and (5) An integrated economic/environmental optimal load management will be developed to achieve environmentally sensitive and guided electricity usage. The results of the project will provide the fundamental basis to ensure equity and fairness in developing and implementing public policy and engineering practices for interconnected power systems. The underlying power flow tracing technique will enable clear and unequivocal cost and usage allocation analyses to equally share the benefit and responsibility for all entities involved in electricity generation and delivery. Moreover, the outcomes of this project will quantify customer-specific emissions and enable users to perform economic/environmental load management to reduce cost and to achieve a range of environmental benefits.
温室气体(GHG)排放导致的气候变化已成为人类社会最具挑战性的问题之一。在美国,2010年发电排放的温室气体占总排放量的40%,二氧化硫占总排放量的64%,氮氧化物占总排放量的16%,汞占总排放量的68%,其他污染物(如小颗粒)也占很大比例。因此,正确计算与发电、输送和消费有关的排放是至关重要的。排放可以在发电厂直接监测和测量。然而,将与电力消耗相关的排放追溯到发电源被称为“不可能”。由于这一艰巨的困难,到目前为止还无法对发电和用电进行准确的生命周期分析,而这种分析对各种产品和过程,包括不同实体和地区的温室气体清单都很重要。此外,进行明确和明确的成本和使用分配分析,以平等地分享所有参与发电和供电的实体的利益和责任,也非常具有挑战性或不可能。在为包括众多发电机和覆盖广大地区的互联电力系统设计和实施公共政策和工程实践时,公平的重要性永远不会被夸大。建议的研究工作将会发展合适的工具,连结负荷和发电/排放源,进行有效的成本和效益分析,并协助制定适当的电力能源和环境相关政策,让不同实体分担责任,最终维持电力行业的透明度、公平和公平。开发的方法将促进客户积极参与,并帮助电力用户做出明智的选择。该项目还将有助于推动电力行业的技术和劳动力发展,这对我们整个国家和未来可持续电力能源的开发和利用至关重要。本研究的目标是开发“破坏性”方法,用于实时识别特定地点和时间任何单个负载的发电和排放源。采用以下方法:(1)将为电力系统开发一个变革性的等效电路模型。提出的基于传递阻抗的系统等效模型可以表示电力系统,该模型具有变革性,可用于其他一般电路分析;(2)根据等效模型和相量测量单元或系统状态估计数据,开发一种“破坏性”方法,以确定特定地点和时间个别负荷总需求的发电来源;(3)开发一种基于公开信息的新方法来识别由于增量需求变化而产生的边际发电机;(4)可准确量化各负荷的局地边际排放和总排放;(5)制订综合经济/环境最佳负荷管理办法,以达致对环境敏感和有导向的用电量。该项目的结果将为确保互联电力系统制定和实施公共政策和工程实践的公平和公正提供根本依据。潜在的电力流动追踪技术将使成本和使用分配分析变得清晰和明确,以便所有参与发电和输送的实体平等地分享利益和责任。此外,该项目的结果将量化客户特定的排放量,并使用户能够进行经济/环境负荷管理,以降低成本并实现一系列环境效益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caisheng Wang其他文献
Modeling, Configuration, and Grid Integration Analysis of Bifacial PV Arrays
双面光伏阵列的建模、配置和并网分析
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:8.8
- 作者:
Mahdi Rouholamini;Lei Chen;Caisheng Wang - 通讯作者:
Caisheng Wang
Tools for Analysis and Design of Distributed Resources—Part II: Tools for Planning, Analysis and Design of Distribution Networks With Distributed Resources
分布式资源分析和设计工具第二部分:分布式资源配电网规划、分析和设计工具
- DOI:
10.1109/tpwrd.2011.2116046 - 发表时间:
2011 - 期刊:
- 影响因子:4.4
- 作者:
Jorge Martínez;F. D. Leon;A. Mehrizi‐Sani;M. H. Nehrir;Caisheng Wang;Venkata Dinavahi - 通讯作者:
Venkata Dinavahi
Deep Learning-Based Weather-Related Power Outage Prediction with Socio-Economic and Power Infrastructure Data
利用社会经济和电力基础设施数据进行基于深度学习的天气相关停电预测
- DOI:
10.48550/arxiv.2404.03115 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Xuesong Wang;Nina Fatehi;Caisheng Wang;Masoud H. Nazari - 通讯作者:
Masoud H. Nazari
An MAS based energy management system for a stand-alone microgrid at high altitude
基于MAS的高海拔独立微电网能量管理系统
- DOI:
10.1016/j.apenergy.2015.01.016 - 发表时间:
2015-04 - 期刊:
- 影响因子:11.2
- 作者:
Meidong Xue;Xuesong Zhang;Caisheng Wang;Junhui Zhao - 通讯作者:
Junhui Zhao
Optimizing water delivery system storage and its influence on air pollutant emission reduction
优化输水系统蓄水及其对大气污染物减排的影响
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Steven X. Jin;Carrie Loya;Eric Tucker;A. Qaqish;Carol J. Miller;S. McElmurry;Caisheng Wang - 通讯作者:
Caisheng Wang
Caisheng Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caisheng Wang', 18)}}的其他基金
IUCRC Phase I Wayne State University: Center for Electric, Connected and Autonomous Technologies for Mobility (eCAT)
IUCRC 第一阶段韦恩州立大学:电动、互联和自主移动技术中心 (eCAT)
- 批准号:
2231523 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Advanced Real-Time Battery Characterization and Management: Safe, Reliable, and Optimal Operation of Battery Systems for Electric-Drive Vehicles and Grid Support
先进的实时电池表征和管理:电动汽车和电网支持的电池系统的安全、可靠和优化运行
- 批准号:
1202133 - 财政年份:2012
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Optimal Distributed Control of Power Grids with Multiple Alternative Energy Distributed Generation Microgrids: Towards Reliable, Sustainable and Clean Power Generation
多种替代能源分布式发电微电网的优化分布式控制:迈向可靠、可持续和清洁发电
- 批准号:
0823865 - 财政年份:2009
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
Carbon emission oriented next generation building energy management system
以碳排放为导向的下一代建筑能源管理系统
- 批准号:
24K20901 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Zero-Emission: the Next-generation of Integrated Technology for Hydrogen storage (ZENITH)
零排放:下一代储氢集成技术(ZENITH)
- 批准号:
EP/X025403/1 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Research Grant
ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality
ARC 零排放发电研究中心,实现碳中和
- 批准号:
IH230100005 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Industrial Transformation Research Hubs
Ultra-high brightness liquid metal field emission cathode for Next generation
下一代超高亮度液态金属场致发射阴极
- 批准号:
22H01955 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Gas-species-independent plasma emission spectroscopy for next-generation electric propulsion
用于下一代电力推进的与气体种类无关的等离子体发射光谱
- 批准号:
22K18854 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
3D analysis of collagen alterations in idiopathic pulmonary fibrosis by Second Harmonic Generation Excitation and Emission Tomography
通过二次谐波产生激发和发射断层扫描对特发性肺纤维化中的胶原蛋白变化进行 3D 分析
- 批准号:
2203403 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Efficient and affordable Zero Emission logistics through NEXT generation Electric TRUCKs
通过下一代电动卡车实现高效且经济实惠的零排放物流
- 批准号:
10037841 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
EU-Funded
Role of Organ of Corti Outer Hair Cell/Vibration Hot Spots in Distortion Product Otoacoustic Emission Generation
柯蒂氏器外毛细胞/振动热点在失真产物耳声发射产生中的作用
- 批准号:
10354021 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Role of Organ of Corti Outer Hair Cell/Vibration Hot Spots in Distortion Product Otoacoustic Emission Generation
柯蒂氏器外毛细胞/振动热点在失真产物耳声发射产生中的作用
- 批准号:
10513827 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Brain phantom generation by generative adversarial net (GAN) for AI-based emission tomography
通过生成对抗网络 (GAN) 生成脑模型,用于基于人工智能的发射断层扫描
- 批准号:
10466967 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别: