Quantum Plasmonics for Low-Photon-Number Nonlinear Optics and Quantum Circuits
用于低光子数非线性光学和量子电路的量子等离子体
基本信息
- 批准号:1508897
- 负责人:
- 金额:$ 36.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Title: Quantum Plasmonics for Low-Photon-Number Nonlinear Optics and Quantum CircuitsMetallic nanostructures can confine light to nanometer length scales in the form of surface-plasmon polaritons, which are electromagnetic waves that propagate at the interface between metallic and dielectric surfaces. Surface plasmons can miniaturize optical devices to the nanoscale, and also generate extremely high electromagnetic intensities that create strong light-matter interactions. These properties open up the possibility for ultra-compact active optical devices such as optical switches, modulators, and wavelength converters, that operate at very high speeds and low energies. To achieve these capabilities, however, requires plasmonic nanostructures with a strong nonlinear optical response.Recent theoretical work has shown that when surface plasmons interact with single quantum emitters the two systems can hybridize to form new coupled modes of light and matter. In this hybridized regime, a single plasmon can produce a nonlinear optical response, paving the way for nonlinear plasmonic circuits operating at the fundamental quantum energy limit. To date, however, this hybridized regime remains elusive because quantum emitters typically suffer from large dephasing due to phonons and spectral wandering. In this program, we will investigate the interaction between metallic nanostructures and indium arsenide quantum dots to study the hybridized regime and develop ultra-fast nonlinear and quantum devices. Indium arsenide quantum dots exhibit a spectrally pure emission making them ideal for achieving hybridization. We will use these high quality quantum emitters to demonstrate hybridization, and explore its nonlinear and quantum optical properties. This program could ultimately pave the way towards nanoscale photonic devices with ultra-low energy dissipation, as well as compact quantum circuits that provide exponential computational speedup and unconditionally secure communication. The program will also support an outreach effort that provides research opportunities for undergraduate and high school students.Technical DescriptionPlasmonic nanostructures can strongly enhance light-matter interactions by confining light to the nanoscale in the form of surface plasmon polaritons (or simply plasmons). Recently, it has been theoretically predicted that when a quantum emitter is placed in the high field region of a plasmonic nanostructure the two systems can hybridize. In this hybridized regime, the emitter and plasmon form new coupled modes that take on both atomic and photonic properties. These hybridized modes exhibit strong optical nonlinearities near the single photon level, making them a highly compelling system for developing opto-electronic and quantum devices with ultra-low power dissipation. Hybridization between single quantum emitters and plasmons has yet to be demonstrated because quantum emitters usually exhibit rapid dipole dephasing due to phonon scattering and spectral wandering. This dephasing destroys the quantum interference that creates the hybridized mode. We propose to overcome this problem using indium arsenide (InAs) quantum dots that exhibit a narrow and nearly transform limited optical emission, making them promising systems for attaining the hybridized regime. A key challenge to coupling these InAs quantum dots to metal nanostructures is that they are embedded in a gallium arsenide matrix and cannot be easily deposited onto plasmonic devices. We will address this challenge through a combination of device design and state-of-the-art nanofabrication techniques. We will characterize the linear and nonlinear properties of fabricated devices. We will then utilize the hybridized regime to demonstrate a nanophotonic optical transistor where a single absorbed control photon can switch many signal photons. We will also utilize the hybridized regime to create an interface between a single trapped spin in a quantum dot and a surface plasmon, which could serve as a fundamental building block for nanoscale quantum circuits. This program could ultimately pave the way towards nanoscale nonlinear photonic devices with ultra-low energy dissipation, and compact quantum circuits that provide exponential computational speedup and unconditionally secure communication.
职务名称:低光子数非线性光学和量子电路的量子等离子体金属纳米结构可以将光以表面等离子体极化激元的形式限制在纳米长度尺度,表面等离子体极化激元是在金属和电介质表面之间的界面处传播的电磁波。 表面等离子体激元可以将光学器件放大到纳米级,并且还产生极高的电磁强度,从而产生强烈的光-物质相互作用。 这些特性为超小型有源光学器件(如光开关、调制器和波长转换器)提供了可能性,这些器件可以在非常高的速度和低能量下工作。 然而,要实现这些功能,需要具有强非线性光学响应的等离子体纳米结构。最近的理论工作表明,当表面等离子体与单个量子发射器相互作用时,两个系统可以杂交,形成新的光和物质的耦合模式。 在这种杂化状态下,单个等离子体激元可以产生非线性光学响应,为在基本量子能量极限下操作的非线性等离子体激元电路铺平了道路。 然而,迄今为止,这种杂化机制仍然难以捉摸,因为量子发射体通常由于声子和光谱漂移而遭受大的失相。 在这个项目中,我们将研究金属纳米结构和砷化铟量子点之间的相互作用,以研究杂化机制并开发超快非线性和量子器件。 砷化铟量子点表现出光谱纯的发射,使其成为实现杂化的理想选择。 我们将使用这些高质量的量子发射器来演示杂化,并探索其非线性和量子光学特性。 该计划最终可以为具有超低能量耗散的纳米级光子器件以及提供指数计算加速和无条件安全通信的紧凑量子电路铺平道路。该计划还将支持为本科生和高中生提供研究机会的外展工作。技术说明等离子体纳米结构可以通过将光限制在纳米尺度上的表面等离子体激元(或简单的等离子体激元)的形式来强烈增强光与物质的相互作用。 最近,理论上已经预测,当量子发射体被放置在等离子体纳米结构的高场区域中时,两个系统可以杂交。 在这种杂化状态下,发射体和等离子体激元形成新的耦合模式,具有原子和光子特性。 这些杂化模式在单光子水平附近表现出很强的光学非线性,使它们成为开发具有超低功耗的光电和量子器件的非常引人注目的系统。 单量子发射体和等离子体激元之间的杂交尚未得到证实,因为量子发射体通常由于声子散射和光谱漂移而表现出快速的偶极退相。这种失相破坏了产生杂化模式的量子干涉。我们建议克服这个问题,使用砷化铟(InAs)量子点,表现出狭窄的,几乎转换有限的光发射,使他们有前途的系统,实现杂交制度。 将这些InAs量子点耦合到金属纳米结构的一个关键挑战是它们嵌入砷化镓基质中,并且不能容易地沉积到等离子体器件上。 我们将通过结合器件设计和最先进的纳米制造技术来应对这一挑战。 我们将描述所制造的器件的线性和非线性特性。 然后,我们将利用杂化制度,以证明一个纳米光子光学晶体管,其中一个单一的吸收控制光子可以开关许多信号光子。 我们还将利用杂化机制在量子点中的单个捕获自旋和表面等离子体激元之间创建界面,这可以作为纳米级量子电路的基本构建块。 该计划最终可能为实现具有超低能量耗散的纳米级非线性光子器件以及提供指数计算加速和无条件安全通信的紧凑量子电路铺平道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edo Waks其他文献
Tunable quantum emitters on large-scale foundry silicon photonics
大规模代工硅光子学上的可调谐量子发射器
- DOI:
10.1038/s41467-024-50208-0 - 发表时间:
2024-07-10 - 期刊:
- 影响因子:15.700
- 作者:
Hugo Larocque;Mustafa Atabey Buyukkaya;Carlos Errando-Herranz;Camille Papon;Samuel Harper;Max Tao;Jacques Carolan;Chang-Min Lee;Christopher J. K. Richardson;Gerald L. Leake;Daniel J. Coleman;Michael L. Fanto;Edo Waks;Dirk Englund - 通讯作者:
Dirk Englund
Quantum cryptography with a photon turnstile
带有光子旋转栅门的量子密码学
- DOI:
10.1038/420762a - 发表时间:
2002-12-19 - 期刊:
- 影响因子:48.500
- 作者:
Edo Waks;Kyo Inoue;Charles Santori;David Fattal;Jelena Vuckovic;Glenn S. Solomon;Yoshihisa Yamamoto - 通讯作者:
Yoshihisa Yamamoto
Dynamic control of 2D non-Hermitian photonic corner skin modes in synthetic dimensions
合成维度中二维非厄米光子角皮模式的动态控制
- DOI:
10.1038/s41467-024-55236-4 - 发表时间:
2024-12-30 - 期刊:
- 影响因子:15.700
- 作者:
Xinyuan Zheng;Mahmoud Jalali Mehrabad;Jonathan Vannucci;Kevin Li;Avik Dutt;Mohammad Hafezi;Sunil Mittal;Edo Waks - 通讯作者:
Edo Waks
Edo Waks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edo Waks', 18)}}的其他基金
C: Quantum Networks to Connect Quantum Technology (QuanNeCQT)
C:连接量子技术的量子网络(QuanNeCQT)
- 批准号:
2134891 - 财政年份:2021
- 资助金额:
$ 36.03万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track C: Interconnecting Quantum Computers for the Next-Generation Internet
NSF 融合加速器轨道 C:为下一代互联网互连量子计算机
- 批准号:
2040695 - 财政年份:2020
- 资助金额:
$ 36.03万 - 项目类别:
Standard Grant
Collaborative research: Quantum Communication with Loss-Protected Photonic Encoding
合作研究:采用防丢失光子编码的量子通信
- 批准号:
1933546 - 财政年份:2019
- 资助金额:
$ 36.03万 - 项目类别:
Standard Grant
NSF-BSF: Optical Coherent Control of Quantum Dot Spin for Ultra-Fast Quantum Information Processing
NSF-BSF:用于超快速量子信息处理的量子点旋转的光学相干控制
- 批准号:
1915375 - 财政年份:2019
- 资助金额:
$ 36.03万 - 项目类别:
Continuing Grant
QII-TAQS: Quantum Machine Learning with Photonics
QII-TAQS:光子学量子机器学习
- 批准号:
1936314 - 财政年份:2019
- 资助金额:
$ 36.03万 - 项目类别:
Standard Grant
EFRI ACQUIRE: Development of scalable quantum networks using ion chips and integrated photonics
EFRI ACQUIRE:使用离子芯片和集成光子学开发可扩展的量子网络
- 批准号:
1741651 - 财政年份:2017
- 资助金额:
$ 36.03万 - 项目类别:
Standard Grant
Spin Based Quantum Computation Using Photon Mediated Interactions
使用光子介导的相互作用进行基于自旋的量子计算
- 批准号:
1415485 - 财政年份:2014
- 资助金额:
$ 36.03万 - 项目类别:
Continuing Grant
BRAIN EAGER: Wireless Measurement of Neuronal Currents Using Spin-Torque Nano-Oscillators
BRAIN EAGER:使用自旋扭矩纳米振荡器无线测量神经元电流
- 批准号:
1450921 - 财政年份:2014
- 资助金额:
$ 36.03万 - 项目类别:
Standard Grant
EAGER: Coherent control of quantum dot spin states by simultaneous optical and microwave excitation
EAGER:通过同时光学和微波激发对量子点自旋态进行相干控制
- 批准号:
1241344 - 财政年份:2012
- 资助金额:
$ 36.03万 - 项目类别:
Standard Grant
PECASE: Coherent Interactions Between Photons and Quantum Dots Using Photonic Crystals
PECASE:使用光子晶体实现光子和量子点之间的相干相互作用
- 批准号:
0846494 - 财政年份:2009
- 资助金额:
$ 36.03万 - 项目类别:
Standard Grant
相似海外基金
Study of Plasmonics in Hybrid Nanostructures
混合纳米结构中的等离激元研究
- 批准号:
RGPIN-2018-05646 - 财政年份:2022
- 资助金额:
$ 36.03万 - 项目类别:
Discovery Grants Program - Individual
New Frontiers in Ultrafast High-Field Plasmonics, Nonlinear Nanoplasmonics, Plasmoelectronics, and THz Spinplasmonics
超快高场等离子体激元、非线性纳米等离子体激元、等离子体电子学和太赫兹自旋等离子体激元的新前沿
- 批准号:
RGPIN-2020-03999 - 财政年份:2022
- 资助金额:
$ 36.03万 - 项目类别:
Discovery Grants Program - Individual
New perspectives in photocatalysis and near-surface chemistry: catalysis meets plasmonics
光催化和近表面化学的新视角:催化遇上等离子体激元
- 批准号:
EP/W017075/1 - 财政年份:2022
- 资助金额:
$ 36.03万 - 项目类别:
Research Grant
Advanced Topological materials for Plasmonics
用于等离子体激元的先进拓扑材料
- 批准号:
2751065 - 财政年份:2022
- 资助金额:
$ 36.03万 - 项目类别:
Studentship
FUNDAMENTALS AND APPLICATIONS OF PLASMONICS AND ULTRAFAST LASERS IN THERANOSTIC NANOMEDECINE
等离激元和超快激光在治疗纳米医学中的基础知识和应用
- 批准号:
RGPIN-2018-05288 - 财政年份:2022
- 资助金额:
$ 36.03万 - 项目类别:
Discovery Grants Program - Individual
Ultrasensitive biosensor based on mechanically tunable chiral plasmonics
基于机械可调手性等离子体的超灵敏生物传感器
- 批准号:
22H03685 - 财政年份:2022
- 资助金额:
$ 36.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Light-Directed Synthesis of Metal Nanocrystal Dimers for Scalable Precision Plasmonics
用于可扩展精密等离子体激元的金属纳米晶体二聚体的光引导合成
- 批准号:
2109067 - 财政年份:2021
- 资助金额:
$ 36.03万 - 项目类别:
Standard Grant
New Frontiers in Ultrafast High-Field Plasmonics, Nonlinear Nanoplasmonics, Plasmoelectronics, and THz Spinplasmonics
超快高场等离子体激元、非线性纳米等离子体激元、等离子体电子学和太赫兹自旋等离子体激元的新前沿
- 批准号:
RGPIN-2020-03999 - 财政年份:2021
- 资助金额:
$ 36.03万 - 项目类别:
Discovery Grants Program - Individual
Study of Plasmonics in Hybrid Nanostructures
混合纳米结构中的等离激元研究
- 批准号:
RGPIN-2018-05646 - 财政年份:2021
- 资助金额:
$ 36.03万 - 项目类别:
Discovery Grants Program - Individual
FUNDAMENTALS AND APPLICATIONS OF PLASMONICS AND ULTRAFAST LASERS IN THERANOSTIC NANOMEDECINE
等离激元和超快激光在治疗纳米医学中的基础知识和应用
- 批准号:
RGPIN-2018-05288 - 财政年份:2021
- 资助金额:
$ 36.03万 - 项目类别:
Discovery Grants Program - Individual