NSF-BSF: Optical Coherent Control of Quantum Dot Spin for Ultra-Fast Quantum Information Processing

NSF-BSF:用于超快速量子信息处理的量子点旋转的光学相干控制

基本信息

  • 批准号:
    1915375
  • 负责人:
  • 金额:
    $ 45.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Among the many choices for solid-state quantum emitters, indium arsenide quantum dots exhibit some of the best optical properties. They emit photons with nearly perfect efficiency and purity. In addition, quantum dots can trap single electrons that act as quantum memories that strongly interact with photons, a key ingredient for long-distance quantum networks. But these spins lose their quantum properties extremely fast because they interact with a large number of nuclear spins that always exist in the natural crystalline structure of the host substrate. In order to improve the quantum properties of these spins and increase the timescales over which they persist requires a better fundamental understanding of spin-nuclear interactions in semiconductors. This improved understanding could directly enable methods to decouple the electrons from the large nuclear spin bath, resulting in orders of magnitude improvements in their coherence lifetime. This program aims to both attain a better understanding of spin nuclear interactions and improve spin lifetimes in semiconductors using a technique called dynamical coherent control. This approach manipulates the spin rapidly to decouple it from noise sources on different timescales. Using this technique, the principal investigator will study the noise properties of spins in a semiconductor host material, and develop new techniques to eliminate them. Success of this program could enable a new generation of chip-integrated quantum devices that can efficiently store and transmit quantum information over long distances. This program is a collaborative NSF-BSF proposal which combines the expertise of the University of Maryland in quantum dot spectroscopy and the Hebrew University in Jerusalem on noise spectroscopy and coherent spin control.To achieve the program goals, the collaborative team will combine state-of-the-art noise spectroscopy and dynamical decoupling with nanophotonic engineering. They will develop a novel optical excitation scheme based on ultra-fast modulation of a narrowband laser to achieve complete spin control along all three axes. Such modulation can be programmed to create nearly unlimited control sequences, thus enabling spin control with significantly greater complexity and opening new possibilities for quantum information processing. They will use this new scheme to perform noise spectroscopy of the quantum dot spin qubit, elucidating the physics underlying its dominant noise sources. Using the physical insight gained from these experiments, they will develop optimized dynamical decoupling sequences that could significantly extend the coherence time of the qubit beyond current state-of-the-art. Coupling these optically active quantum memories to nanophotonic cavities will provide a path to engineer efficient spin-photon interfaces, and achieve large scalability. The ability to control and decouple nuclear spin interactions in III-V semiconductors would provide a qubit system with long-lived coherence properties and nearly pristine quantum emission. Such a system could form the fundamental building block for quantum networks, photonic quantum computers, and quantum sensors. In the III-V semiconductor community, spin dynamics remains a poorly understood area of research with many open questions regarding the dominant noise interactions and fundamental coherence limits. This research will shed light on this poorly understood physics, opening up brand new applications and control tools for spin in III-V semiconductor materials. In addition to the research component, this program will include a strong outreach effort to educate high school students and broaden participation in STEM fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在固态量子发射体的众多选择中,砷化铟量子点表现出一些最好的光学特性。它们以近乎完美的效率和纯度发射光子。此外,量子点可以捕获单个电子,充当与光子强烈相互作用的量子存储器,这是长距离量子网络的关键组成部分。但是这些自旋失去量子特性的速度非常快,因为它们与大量的核自旋相互作用,而这些核自旋总是存在于宿主基质的自然晶体结构中。为了改善这些自旋的量子特性并增加它们持续存在的时间尺度,需要对半导体中自旋核相互作用有更好的基本理解。这种改进的理解可以直接使电子从大的核自旋浴中解耦,从而使它们的相干寿命得到数量级的提高。该计划旨在更好地理解自旋核相互作用,并利用一种称为动态相干控制的技术提高半导体中的自旋寿命。这种方法可以快速操纵自旋,使其与不同时间尺度上的噪声源分离。利用这项技术,首席研究员将研究半导体宿主材料中自旋的噪声特性,并开发新的技术来消除它们。该计划的成功将使新一代芯片集成量子设备能够有效地存储和长距离传输量子信息。该项目是NSF-BSF的合作提案,结合了马里兰大学在量子点光谱和耶路撒冷希伯来大学在噪声光谱和相干自旋控制方面的专业知识。为了实现项目目标,合作团队将结合最先进的噪声光谱和动态解耦与纳米光子工程。他们将开发一种基于窄带激光超快速调制的新型光激发方案,以实现沿所有三个轴的完全自旋控制。这种调制可以编程来创建几乎无限的控制序列,从而使自旋控制具有更大的复杂性,并为量子信息处理开辟了新的可能性。他们将使用这个新方案来执行量子点自旋量子比特的噪声光谱,阐明其主要噪声源的物理基础。利用从这些实验中获得的物理见解,他们将开发优化的动态解耦序列,这将大大延长量子比特的相干时间,超过当前最先进的技术。将这些光学主动量子存储器耦合到纳米光子腔将为设计有效的自旋光子接口提供一条途径,并实现大的可扩展性。在III-V型半导体中控制和解耦核自旋相互作用的能力将提供一个具有长寿命相干性和几乎原始量子发射的量子比特系统。这样的系统可以构成量子网络、光子量子计算机和量子传感器的基本构建块。在III-V半导体界,自旋动力学仍然是一个知之甚少的研究领域,有许多关于主要噪声相互作用和基本相干限制的开放问题。这项研究将揭示这一鲜为人知的物理学,为III-V半导体材料的自旋开辟全新的应用和控制工具。除了研究部分,该计划还将包括大力推广教育高中生和扩大STEM领域的参与。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
All-Optical Noise Spectroscopy of a Solid-State Spin
固态自旋的全光噪声光谱
  • DOI:
    10.1021/acs.nanolett.2c04552
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Farfurnik, Demitry;Singh, Harjot;Luo, Zhouchen;Bracker, Allan S.;Carter, Samuel G.;Pettit, Robert M.;Waks, Edo
  • 通讯作者:
    Waks, Edo
Single-Shot Readout of a Solid-State Spin in a Decoherence-Free Subspace
无退相干子空间中固态自旋的单次读出
  • DOI:
    10.1103/physrevapplied.15.l031002
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Farfurnik, D.;Pettit, R. M.;Luo, Z.;Waks, E.
  • 通讯作者:
    Waks, E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edo Waks其他文献

Tunable quantum emitters on large-scale foundry silicon photonics
大规模代工硅光子学上的可调谐量子发射器
  • DOI:
    10.1038/s41467-024-50208-0
  • 发表时间:
    2024-07-10
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Hugo Larocque;Mustafa Atabey Buyukkaya;Carlos Errando-Herranz;Camille Papon;Samuel Harper;Max Tao;Jacques Carolan;Chang-Min Lee;Christopher J. K. Richardson;Gerald L. Leake;Daniel J. Coleman;Michael L. Fanto;Edo Waks;Dirk Englund
  • 通讯作者:
    Dirk Englund
Quantum cryptography with a photon turnstile
带有光子旋转栅门的量子密码学
  • DOI:
    10.1038/420762a
  • 发表时间:
    2002-12-19
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Edo Waks;Kyo Inoue;Charles Santori;David Fattal;Jelena Vuckovic;Glenn S. Solomon;Yoshihisa Yamamoto
  • 通讯作者:
    Yoshihisa Yamamoto
Dynamic control of 2D non-Hermitian photonic corner skin modes in synthetic dimensions
合成维度中二维非厄米光子角皮模式的动态控制
  • DOI:
    10.1038/s41467-024-55236-4
  • 发表时间:
    2024-12-30
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Xinyuan Zheng;Mahmoud Jalali Mehrabad;Jonathan Vannucci;Kevin Li;Avik Dutt;Mohammad Hafezi;Sunil Mittal;Edo Waks
  • 通讯作者:
    Edo Waks

Edo Waks的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edo Waks', 18)}}的其他基金

C: Quantum Networks to Connect Quantum Technology (QuanNeCQT)
C:连接量子技术的量子网络(QuanNeCQT)
  • 批准号:
    2134891
  • 财政年份:
    2021
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track C: Interconnecting Quantum Computers for the Next-Generation Internet
NSF 融合加速器轨道 C:为下一代互联网互连量子计算机
  • 批准号:
    2040695
  • 财政年份:
    2020
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Collaborative research: Quantum Communication with Loss-Protected Photonic Encoding
合作研究:采用防丢失光子编码的量子通信
  • 批准号:
    1933546
  • 财政年份:
    2019
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
QII-TAQS: Quantum Machine Learning with Photonics
QII-TAQS:光子学量子机器学习
  • 批准号:
    1936314
  • 财政年份:
    2019
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
EFRI ACQUIRE: Development of scalable quantum networks using ion chips and integrated photonics
EFRI ACQUIRE:使用离子芯片和集成光子学开发可扩展的量子网络
  • 批准号:
    1741651
  • 财政年份:
    2017
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Quantum Plasmonics for Low-Photon-Number Nonlinear Optics and Quantum Circuits
用于低光子数非线性光学和量子电路的量子等离子体
  • 批准号:
    1508897
  • 财政年份:
    2015
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Spin Based Quantum Computation Using Photon Mediated Interactions
使用光子介导的相互作用进行基于自旋的量子计算
  • 批准号:
    1415485
  • 财政年份:
    2014
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant
BRAIN EAGER: Wireless Measurement of Neuronal Currents Using Spin-Torque Nano-Oscillators
BRAIN EAGER:使用自旋扭矩纳米振荡器无线测量神经元电流
  • 批准号:
    1450921
  • 财政年份:
    2014
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
EAGER: Coherent control of quantum dot spin states by simultaneous optical and microwave excitation
EAGER:通过同时光学和微波激发对量子点自旋态进行相干控制
  • 批准号:
    1241344
  • 财政年份:
    2012
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
PECASE: Coherent Interactions Between Photons and Quantum Dots Using Photonic Crystals
PECASE:使用光子晶体实现光子和量子点之间的相干相互作用
  • 批准号:
    0846494
  • 财政年份:
    2009
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant

相似国自然基金

枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
  • 批准号:
    31871988
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
  • 批准号:
    61774171
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
  • 批准号:
    38870708
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333889
  • 财政年份:
    2024
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333888
  • 财政年份:
    2024
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
NSF-BSF Combinatorial Set Theory and PCF
NSF-BSF 组合集合论和 PCF
  • 批准号:
    2400200
  • 财政年份:
    2024
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
  • 批准号:
    2401159
  • 财政年份:
    2024
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了