GOALI: Collaborative Research: Integrated Antenna System Design for High Clutter and High Bandwidth Channels Using Advanced Propagation Models

GOALI:协作研究:使用先进传播模型的高杂波和高带宽信道集成天线系统设计

基本信息

项目摘要

The Internet of Things (IoT), also referred to as the Industrial Internet, is projected to be modern society's third great revolution following the Industrial Revolution and the Communications Revolution. A great proportion of the communications performed in the IoT will be between devices, in so-called machine-to-machine (M2M) systems, and in an increasingly automated manner. The environments in which IoT devices will operate will often be more complex, cluttered and challenging for wireless communications than either today's ubiquitous mobile communications or wireless data networks. This research addresses a critical component of the IoT wireless communications link, namely the antenna systems for these small, inexpensive devices. New antenna designs are needed, along with new methods for low-cost digital manufacturing and for testing the devices under realistic operating conditions. The research findings of this project have potential to positively impact the robustness of not only M2M systems but also systems utilized in dynamic environments such vehicle-to-vehicle, first-responder and military field operations. Furthermore, the underlying knowledge could influence the future designs of medical devices, on-body sensor systems, robotic systems, un-manned ground and air vehicles and similar applications where customization, form factor, production volume or other considerations make direct digital manufacturing (DDM) an attractive option. Graduate students from the University of Vermont and the University of South Florida will collaborate with the industry participants from Harris Corporation. The investigators will also work closely with STEM programs targeting high school students, in particular those students from underrepresented and disadvantaged populations, to develop activities that provide insights on the foundations that make wireless communications possible. The proposed research will lead to techniques and technology that enable wireless devices for Internet of Things (IoT) applications operating at 2.45, 5 and 60 GHz to determine and adapt to the channel impairments using new antenna system designs. Advanced manufacturing and integration approaches will be studied with the goal of reducing the size and cost of these devices and systems. The intellectual merit lies in the fusion of ideas from propagation modeling, antenna design and direct digital manufacturing (DDM). Previous work by the investigators, who have a long and productive history of collaboration, has contributed new understanding of channel conditions for highly cluttered environments, 3D antenna designs, and the use of DDM for microwave circuit and antenna fabrication. The work will leverage this expertise in the investigation of new channel models and the resulting theory that will inform the study of next generation, adaptive antenna systems. A new approach to quantifying antenna system performance based on collecting and analyzing antenna responses to a wide range of channel conditions is the basis for the proposed propagation studies. The orientation, spacing and reconfiguration of antenna elements in a multi-polarization system will be studied using a statistical characterization method. Advanced DDM processes will be investigated using a unique 3D printer that combines plastic extrusion, paste micro-dispensing and laser processing in a single tool. The new processes will provide the ability to realize 3D structural electronics that comprise package-integrated antenna systems that include ferroelectric tuning networks. The realization of electronically-tunable DDM devices requires a new process to merge a technology with length scales on the order of 10's of microns (DDM) with one having length scales on the order of microns (integrated circuits). The eventual goal of demonstrating, in collaboration with GOALI partner Harris Corp., high performance mm-wave (60 GHz) antenna systems of this nature necessitates tight control over feature sizes and the quality and surface features of printed conductors; the use of pulsed laser processing will be studied as a means to address these challenges.
物联网(IoT),也被称为工业互联网,预计将是继工业革命和通信革命之后现代社会的第三次伟大革命。 物联网中执行的很大一部分通信将在所谓的机器对机器(M2M)系统中的设备之间进行,并且以越来越自动化的方式进行。 对于无线通信而言,物联网设备运行的环境通常比当今无处不在的移动的通信或无线数据网络更加复杂、混乱和具有挑战性。 这项研究解决了物联网无线通信链路的关键组件,即这些小型廉价设备的天线系统。新的天线设计是必要的,沿着的是低成本数字化制造和在实际工作条件下测试设备的新方法。该项目的研究成果不仅对M2M系统的鲁棒性有积极影响,而且对在动态环境中使用的系统也有积极影响,例如车辆对车辆,第一响应者和军事现场操作。此外,潜在的知识可能会影响医疗设备,身体传感器系统,机器人系统,无人驾驶地面和空中车辆以及类似应用的未来设计,其中定制,形状因素,生产量或其他考虑因素使直接数字制造(DDM)成为一个有吸引力的选择。佛蒙特大学和南佛罗里达大学的研究生将与哈里斯公司的行业参与者合作。调查人员还将与针对高中生的STEM项目密切合作,特别是那些来自代表性不足和弱势群体的学生,以开展活动,提供有关使无线通信成为可能的基础的见解。拟议的研究将导致技术和技术,使物联网(IoT)应用的无线设备在2.45,5和60 GHz下运行,以确定和适应使用新的天线系统设计的信道损伤。 先进的制造和集成方法将被研究,目标是减少这些设备和系统的尺寸和成本。 智能的优点在于传播建模,天线设计和直接数字制造(DDM)的想法融合。 研究人员以前的工作,谁有一个长期和富有成效的合作历史,已经贡献了新的理解信道条件的高度杂乱的环境,3D天线设计,并使用DDM的微波电路和天线制造。这项工作将利用这一专业知识,在新的信道模型的调查和由此产生的理论,将通知下一代,自适应天线系统的研究。一种新的方法来量化天线系统的性能的基础上收集和分析天线的响应范围广泛的信道条件是传播研究的基础。将使用统计表征方法研究多极化系统中天线单元的方向、间距和重新配置。先进的DDM工艺将使用独特的3D打印机进行研究,该打印机将塑料挤出,膏体微点胶和激光加工结合在一个工具中。 新工艺将提供实现3D结构电子器件的能力,该结构电子器件包括封装集成天线系统,该天线系统包括铁电调谐网络。电子可调谐DDM器件的实现需要一种新的工艺来将具有数十微米量级的长度尺度(DDM)的技术与具有微米量级的长度尺度的技术(集成电路)合并。最终目标是与GOALI合作伙伴哈里斯公司合作,这种性质的高性能毫米波(60 GHz)天线系统需要严格控制印刷导体的特征尺寸和质量以及表面特征;将研究使用脉冲激光处理作为解决这些挑战的手段。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeff Frolik其他文献

On Performance Characterization of Harmonic Transponders
谐波应答器性能表征

Jeff Frolik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeff Frolik', 18)}}的其他基金

Collaborative Research: A Systems-Centric Foundation for Electrical and Computer Engineering Education
协作研究:以系统为中心的电气和计算机工程教育基础
  • 批准号:
    1140450
  • 财政年份:
    2012
  • 资助金额:
    $ 22.56万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a 3D Terrestrial Laser Scanner for the Temporal-Morphological Study of Manmade and Natural Structures
MRI:获取 3D 地面激光扫描仪,用于人造和自然结构的时间形态研究
  • 批准号:
    1229045
  • 财政年份:
    2012
  • 资助金额:
    $ 22.56万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Passive, Diamagnetic Inertial Sensing Integrated with High-Sensitivity Telemetry
GOALI/合作研究:无源抗磁惯性传感与高灵敏度遥测集成
  • 批准号:
    0925728
  • 财政年份:
    2009
  • 资助金额:
    $ 22.56万
  • 项目类别:
    Standard Grant
Collaborative Project: MUSE - A Model for Undergraduate Learning of Complex-Engineered Systems
合作项目:MUSE - 复杂工程系统本科学习模型
  • 批准号:
    0717326
  • 财政年份:
    2007
  • 资助金额:
    $ 22.56万
  • 项目类别:
    Standard Grant
A Comprehensive, Laboratory-Enchanced Signals and Communications Curriculum
全面的实验室增强信号和通信课程
  • 批准号:
    0310150
  • 财政年份:
    2003
  • 资助金额:
    $ 22.56万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
  • 批准号:
    2245117
  • 财政年份:
    2022
  • 资助金额:
    $ 22.56万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
  • 批准号:
    2129825
  • 财政年份:
    2022
  • 资助金额:
    $ 22.56万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
  • 批准号:
    2129776
  • 财政年份:
    2022
  • 资助金额:
    $ 22.56万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments
DMREF:合作研究:GOALI:加速极端环境中高熵硅酸盐的发现
  • 批准号:
    2219788
  • 财政年份:
    2022
  • 资助金额:
    $ 22.56万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Control-Oriented Modeling and Predictive Control of High Efficiency Low-emission Natural Gas Engines
GOALI/协作研究:高效低排放天然气发动机的面向控制的建模和预测控制
  • 批准号:
    2302217
  • 财政年份:
    2022
  • 资助金额:
    $ 22.56万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
  • 批准号:
    2147126
  • 财政年份:
    2022
  • 资助金额:
    $ 22.56万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
  • 批准号:
    2147122
  • 财政年份:
    2022
  • 资助金额:
    $ 22.56万
  • 项目类别:
    Standard Grant
Collaborative Research: ISS: GOALI: Transients and Instabilities in Flow Boiling and Condensation Under Microgravity
合作研究:ISS:GOALI:微重力下流动沸腾和冷凝的瞬态和不稳定性
  • 批准号:
    2126461
  • 财政年份:
    2021
  • 资助金额:
    $ 22.56万
  • 项目类别:
    Standard Grant
Collaborative Research/GOALI: Fully Continuous Downstream Processing Enabled by Coupled Precipitation-Filtration Capture Operations
协作研究/GOALI:通过耦合沉淀-过滤捕获操作实现完全连续的下游处理
  • 批准号:
    2032261
  • 财政年份:
    2021
  • 资助金额:
    $ 22.56万
  • 项目类别:
    Standard Grant
Collaborative Research & GOALI: Direct-Fed Ethanol Metal-Supported Solid Oxide Fuel Cells
合作研究
  • 批准号:
    2050691
  • 财政年份:
    2021
  • 资助金额:
    $ 22.56万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了