Photonic Imaging Receiver for Ultra-wideband Radio-frequency Communications and Sensing

用于超宽带射频通信和传感的光子成像接收器

基本信息

  • 批准号:
    1509081
  • 负责人:
  • 金额:
    $ 34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

A new concept in radio frequency (RF) receivers will be developed under this program. RF receivers are a vital component in a variety of systems that are yielding transformative benefits for society. Perhaps most prominent is wireless broadband internet connectivity. Enhancing the capacity of wireless networks will accelerate the benefits of worldwide connectivity among households, schools, hospitals, businesses, and governments. The photonic imaging receiver uses optical detection and processing of RF signals to enable unprecedented capabilities, from extremely broadband wireless communications to all-weather obscurant-penetrating imaging. Conventional RF receivers are limited by the intrinsic nonlinearity of the detection process, by which multiple signals mix and generate spurious responses. The unique capability of the imaging receiver system is the use of optics to"see" upconverted RF signals much like the eye or a camera sees visible light: sources of RF energy within its field of view produce distinct spots on an image plane or camera sensor, whereupon these spots can be detected separately, minimizing intermixing. This approach affords advantages in speed, complexity, linearity, and also adds new capabilities such as real-time direction finding, tracking, and processing of multiple signal sources. The imaging receiver system will offer increased capacity in wireless networks, while also improving performance and reducing infrastructure cost. The same enabling technology will also provide benefits in transportation and search/rescue operations, allowing navigation in obscurants like fog, smoke, and sand. Likewise, security checkpoints will be able to screen persons and vehicles passively at a distance, enhancing both security and convenience. The research effort will investigate the limits and optimize the performance potential of such imaging receiver systems. The photonic imaging receiver is a novel type of phased array receiver that uses the coherent properties of frequency upconversion in optical modulators to detect radio-frequency (RF) signals, and simple free-space optics to perform signal correlations between array elements, which are conventionally performed computationally after signals are detected and digitized. The optical upconversion process offers broad bandwidth, from UHF to millimeter-wave. Free-space optical processing enables signals coming from different sources to be spatially separated prior to detection, minimizing intermodulation and dramatically improving spur-free dynamic range (SFDR). It also provides the array gain of a phased array receiver, but with the advantage of forming all beams simultaneously. The recovery of data that has been modulated onto detected RF carriers is enabled by the use of a widely tunable optical local oscillator that is mixed with the upconverted signal on a photodiode. The foundation of the technical approach has been proven in the context of passive millimeter-wave imaging. This research program will explore the fundamental limitations of the approach in a broad and general sense, but will primarily focus on extending the utility of the approach toward ultra-wideband wireless communications, enhancing capacity by enabling spectrum reuse through spatial division multiple access. It will also investigate a novel concept in wideband systems, namely scale invariance, which seeks to replace conventional Fourier (time-frequency) domain formalism, in which the basis functions used for carrying information are continuous-wave (CW) carriers, with a new formalism based not on time-harmonic CW carriers but rather scale-invariant functions, which are naturally suited to applications with extremely broad bandwidth.
射频(RF)接收器的新概念将在该计划下开发。射频接收器是各种系统的重要组成部分,这些系统正在为社会带来变革性的好处。也许最突出的是无线宽带互联网连接。增强无线网络的容量将加速家庭、学校、医院、企业和政府之间的全球连接带来的好处。光子成像接收器使用射频信号的光学检测和处理来实现前所未有的功能,从极宽带的无线通信到全天候模糊穿透成像。传统的射频接收器受到检测过程的固有非线性的限制,多个信号混合并产生杂散响应。成像接收器系统的独特功能是使用光学装置来“看到”上转换的射频信号,就像眼睛或相机看到可见光一样:其视场内的射频能量源在图像平面或相机传感器上产生不同的斑点,从而可以单独检测这些斑点,从而最大限度地减少混合。这种方法在速度、复杂度、线性度方面具有优势,还增加了新的功能,如实时测向、跟踪和处理多个信号源。成像接收系统将在无线网络中提供更大的容量,同时还可以提高性能和降低基础设施成本。同样的使能技术也将在运输和搜救行动中提供好处,允许在雾、烟雾和沙子等遮蔽物中导航。同样,安全检查站将能够对远处的人员和车辆进行被动检查,既增强了安全性,又增强了便利性。这项研究工作将调查这种成像接收器系统的极限和优化性能潜力。光子成像接收器是一种新型相控阵接收器,它使用光调制器中频率上转换的相干特性来检测射频(RF)信号,并使用简单的自由空间光学来执行阵列单元之间的信号相关,这通常是在信号被检测和数字化之后通过计算来执行的。光学上转换过程提供了从UHF到毫米波的宽带宽。自由空间光学处理使来自不同来源的信号能够在检测之前进行空间分离,最大限度地减少了互调并显著提高了无杂散动态范围(SFDR)。它还提供了相控阵接收器的阵列增益,但具有同时形成所有波束的优势。通过使用与光电二极管上的上转换信号混合的宽可调光学本机振荡器,能够恢复已经调制到检测到的RF载波上的数据。该技术方法的基础已在被动毫米波成像方面得到证明。这项研究计划将从广义和一般意义上探索该方法的基本限制,但主要侧重于将该方法的效用扩展到超宽带无线通信,通过通过空分多址实现频谱重用来提高容量。它还将研究宽带系统中的一个新概念,即尺度不变性,它试图用一种新的形式取代传统的傅里叶(时-频)域形式,其中用于携带信息的基函数是连续波(CW)载波,而不是基于时间谐波的连续波(CW)载波,而是基于尺度不变的函数,这自然地适合于极宽带宽的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dennis Prather其他文献

Dennis Prather的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dennis Prather', 18)}}的其他基金

PIC: Hybrid Integration of Electro-Optic and Semiconductor Photonic Devices and Circuits with the AIM Photonics Institute
PIC:与 AIM 光子学研究所的电光和半导体光子器件和电路的混合集成
  • 批准号:
    1809695
  • 财政年份:
    2018
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Dispersion Engineering of Photonic Crystals
光子晶体色散工程
  • 批准号:
    0322633
  • 财政年份:
    2003
  • 资助金额:
    $ 34万
  • 项目类别:
    Continuing Grant
Spectrometer on a Chip
芯片上的光谱仪
  • 批准号:
    0088446
  • 财政年份:
    2000
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
CAREER: MESO-SCOPIC DIFFRACTIVE OPTICAL ELEMENTS FOR MONOLITHIC INTEGRATION WITH VLSI
职业:用于与 VLSI 单片集成的细观衍射光学元件
  • 批准号:
    9875665
  • 财政年份:
    1999
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant

相似国自然基金

非小细胞肺癌Biomarker的Imaging MS研究新方法
  • 批准号:
    30672394
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

One dimensional magnetic resonance spectroscopic imaging with radiofrequency field gradients/radiofrequency phase gradients and a microstrip as transmitter and receiver for the investigation of 3D cell cultures
使用射频场梯度/射频相位梯度和微带作为发射器和接收器的一维磁共振波谱成像,用于研究 3D 细胞培养物
  • 批准号:
    329207848
  • 财政年份:
    2016
  • 资助金额:
    $ 34万
  • 项目类别:
    Research Grants
High resolution mono- and bistatic SAR imaging by using a novel modular Radar transmitter and multi-channel receiver system
使用新型模块化雷达发射器和多通道接收器系统进行高分辨率单基地和双基地 SAR 成像
  • 批准号:
    254415837
  • 财政年份:
    2014
  • 资助金额:
    $ 34万
  • 项目类别:
    Research Grants
MRI: Development of a Synchronous Direct Digital Receiver System for Geospace Imaging Studies
MRI:开发用于地球空间成像研究的同步直接数字接收器系统
  • 批准号:
    1229541
  • 财政年份:
    2012
  • 资助金额:
    $ 34万
  • 项目类别:
    Continuing Grant
Imaging the topography of the Lithosphere-Asthenosphere Boundary beneath South and East Africa using S receiver functions; a key to understand continental lithospheric evolution in and around active rifting systems
使用 S 接收器函数对南非和东非下方岩石圈-软流圈边界的地形进行成像;
  • 批准号:
    166045095
  • 财政年份:
    2010
  • 资助金额:
    $ 34万
  • 项目类别:
    Research Grants
MRI: Development of a Lightweight Towed Array Receiver (LTAR) for Wide Area Ocean Monitoring and Imaging
MRI:开发用于广域海洋监测和成像的轻型拖曳阵列接收器 (LTAR)
  • 批准号:
    1040101
  • 财政年份:
    2010
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Collaborative Research: High-resolution receiver function imaging of crustal structure in the Southern Great Basin, Nevada
合作研究:内华达州南部大盆地地壳结构的高分辨率接收函数成像
  • 批准号:
    0838525
  • 财政年份:
    2009
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Collaborative Research: High-resolution receiver function imaging of crustal structure in the Southern Great Basin, Nevada
合作研究:内华达州南部大盆地地壳结构的高分辨率接收函数成像
  • 批准号:
    0838509
  • 财政年份:
    2009
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Development of single receiver coil fast MRI system using data interpolation method in Fresnel transform imaging technique
采用菲涅耳变换成像技术数据插值法开发单接收线圈快速磁共振成像系统
  • 批准号:
    19500378
  • 财政年份:
    2007
  • 资助金额:
    $ 34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
GEM-CEDAR Postdoc: Understanding MIC through Tomographic Imaging of the Ionospheric and Plasmaspheric Density Using Ground and Space-Based GPS Receiver
GEM-CEDAR 博士后:使用地面和天基 GPS 接收器通过电离层和等离子体层密度断层成像了解 MIC
  • 批准号:
    0524711
  • 财政年份:
    2005
  • 资助金额:
    $ 34万
  • 项目类别:
    Continuing Grant
Imaging the Northern Costa Rica Subducted Slab With Broadband Receiver Functions
使用宽带接收器功能对哥斯达黎加北部俯冲板块进行成像
  • 批准号:
    0440396
  • 财政年份:
    2005
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了