Spectrally and Temporally Engineered Processing using PhotoElectroChemistry (STEP-PEC)
使用光电化学 (STEP-PEC) 进行光谱和时间工程处理
基本信息
- 批准号:1509609
- 负责人:
- 金额:$ 36.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract: Non-Technical: Semiconductor devices are ubiquitous. They represent a multi-trillion dollar industry. Ordinary objects such as electrical outlets, thermostats, and blood pressure/heart rate monitors, are being embedded with increasingly complex control electronics, sensors, and network connectivity to enable greater functionality, value, and service. Although foundry services exist for large volume manufacturing of microelectronics for ?smart? objects, there are no cheap ($100/run) rapid turnaround (1hr) options for garage inventors to prototype new ideas. The biggest hurdles are that conventional microfabrication requires a cleanroom and expensive ($1M) equipment. This NSF project seeks to democratize semiconductor manufacturing by investigating a new fabrication paradigm in which pulses of light of specific colors catalyze electrochemical reactions that dope, etch, and metallize designated circuit patterns onto a semiconductor wafer with high resolution. The project offers rich opportunities for high school and community college teachers to participate in research and develop teaching modules for hands-on labs through Research Experiences for Teachers projects. Research and teaching will be integrated through the PI?s ?Principles of Experimental Research? course. Graduate and undergraduate students will be trained in semiconductor micro- and nano-fabrication, photonics, optical system design, fluid mechanics, and bio-sensors through the proposed research activities. Recruitment, retention, and participation of students from underrepresented groups will be addressed through Research Experiences for Undergraduates internships and engineering summer camps for 9th-12th grade girls. Results from both research and teaching will be widely disseminated in journals and conferences to enhance the current understanding of photoelectrochemical processing and of engineering education/outreach methodologies.Technical: Photochemical etching uses light to generate minority carriers that catalyze semiconductor wet etching. Recently, the PI?s team implemented photochemical etching using a projector. The local etch rate was controlled using color images drawn in PowerPointTM. Here, the team seeks to drastically improve the etch resolution and anisotropy and expand the method to enable new types of light controlled processes, e.g. patterned doping and metallization, so that new classes of unconventional photonic devices and multifunctional integrated circuits can be fabricated in a single system. In the proposed system, a super-continuum laser, tunable filter, and spatial light modulator will generate high intensity spectrally engineered dynamic image pulses and a synchronized electrical pulse generator will temporally gate the chemical reactions. If successful, this project is potentially transformative because it could create a new semiconductor fabrication paradigm for several reasons. First, multiple processing steps, e.g. doping, etching, and metallization can be performed sequentially in the same system. Second, these processes can be easily aligned to features made through conventional cleanroom processing since the illumination pattern can be adjusted in software. Moreover, this dynamic illumination capability enables new designs to be rapidly prototyped. Next, the processing rate for different bandgap materials can be individually adjusted. Finally, the limitations imposed by conventional planar fabrication technology can be removed and complex 3D devices can be fabricated with precisely controlled dimensions. The overall research goals of this project are to:1. Understand how spectral and temporal gating affects the resolution, anisotropy, photo-induced selectivity (e.g. light on vs. off), and material selectivity (e.g. GaAs vs. AlGaAs) of the etch;2. Develop photo-induced electroplating and doping techniques; and3. Fabricate unconventional devices with complex topography.
翻译后摘要:非技术:半导体器件无处不在。它们代表着一个价值数万亿美元的产业。诸如电源插座、恒温器和血压/心率监测器等普通对象正在嵌入越来越复杂的控制电子设备、传感器和网络连接,以实现更大的功能、价值和服务。虽然代工服务存在大批量制造的微电子产品?聪明吗对象,没有便宜的(100美元/运行)快速周转(1小时)的选择车库发明家原型新的想法。最大的障碍是传统的微制造需要一个洁净室和昂贵的(100万美元)设备。这个NSF项目旨在通过研究一种新的制造模式来实现半导体制造的民主化,在这种模式中,特定颜色的光脉冲催化电化学反应,将指定的电路图案掺杂、蚀刻和金属化到具有高分辨率的半导体晶片上。该项目为高中和社区大学教师提供了丰富的机会,通过教师研究经验项目参与研究和开发实践实验室的教学模块。研究和教学将通过PI整合?是什么?实验研究原理当然了研究生和本科生将通过拟议的研究活动接受半导体微纳米制造、光子学、光学系统设计、流体力学和生物传感器方面的培训。招聘,保留,并从代表性不足的群体的学生的参与将通过研究经验为本科生实习和工程夏令营9日至12日年级的女孩解决。从研究和教学的结果将在期刊和会议上广泛传播,以提高目前的光电化学处理和工程教育/推广方法的理解。技术:光化学蚀刻使用光来产生催化半导体湿蚀刻的少数载流子。最近,PI?的团队使用投影仪实现了光化学蚀刻。使用PowerPointTM中绘制的彩色图像控制局部蚀刻速率。在这里,该团队寻求大幅提高蚀刻分辨率和各向异性,并扩展该方法,以实现新型的光控工艺,例如图案化掺杂和金属化,从而可以在单个系统中制造新型的非常规光子器件和多功能集成电路。在所提出的系统中,超连续激光器、可调谐滤波器和空间光调制器将产生高强度光谱工程动态图像脉冲,并且同步电脉冲发生器将在时间上选通化学反应。如果成功的话,这个项目具有潜在的变革性,因为它可以创造一个新的半导体制造模式,原因有几个。首先,可以在同一系统中顺序地执行多个处理步骤,例如掺杂、蚀刻和金属化。第二,这些过程可以很容易地对准通过传统的洁净室处理的功能,因为照明模式可以在软件中调整。此外,这种动态照明能力使新设计能够快速原型化。接下来,可以单独调整不同带隙材料的处理速率。最后,可以消除传统平面制造技术所带来的限制,并且可以以精确控制的尺寸制造复杂的3D器件。本课题的总体研究目标是:1.了解光谱和时间门控如何影响分辨率、各向异性、光致选择性(例如光开与关)和蚀刻的材料选择性(例如GaAs与AlGaAs);2.发展光致电镀及掺杂技术;制造具有复杂地形的非常规器件。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Selective area formation of arsenic oxide-rich octahedral microcrystals during photochemical etching of n-type GaAs
- DOI:10.1364/ome.8.000289
- 发表时间:2018-02
- 期刊:
- 影响因子:2.8
- 作者:Aditi Udupa;Xin Yu;Lonna Edwards;L. Goddard
- 通讯作者:Aditi Udupa;Xin Yu;Lonna Edwards;L. Goddard
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lynford Goddard其他文献
Lynford Goddard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lynford Goddard', 18)}}的其他基金
Strategies: Catalyzing Inclusive STEM Experiences All Year Round (CISTEME365)
策略:促进全年包容性 STEM 体验 (CISTEME365)
- 批准号:
1850398 - 财政年份:2019
- 资助金额:
$ 36.97万 - 项目类别:
Standard Grant
Volumetric Optical Integrated Circuit Elements (VOICE)
体积光学集成电路元件(VOICE)
- 批准号:
1935289 - 财政年份:2019
- 资助金额:
$ 36.97万 - 项目类别:
Standard Grant
CAREER: Theory and Application of Reflective Microring Resonators
职业:反射式微环谐振器的理论与应用
- 批准号:
1055941 - 财政年份:2011
- 资助金额:
$ 36.97万 - 项目类别:
Standard Grant
Metallic Nanocluster Surface Coated Nano VCSEL Arrays for Trace Gas Detection
用于痕量气体检测的金属纳米团簇表面涂层纳米 VCSEL 阵列
- 批准号:
0901388 - 财政年份:2009
- 资助金额:
$ 36.97万 - 项目类别:
Standard Grant
相似海外基金
Predicting effects of interannual variability in climate and drought on plant community outcomes, resilience, and soil carbon using temporally replicated grassland reconstructions
使用临时复制的草地重建来预测气候和干旱的年际变化对植物群落结果、恢复力和土壤碳的影响
- 批准号:
2343738 - 财政年份:2024
- 资助金额:
$ 36.97万 - 项目类别:
Continuing Grant
Collaborative Research: The role of temporally varying specific storage on confined aquifer dynamics
合作研究:随时间变化的特定存储对承压含水层动态的作用
- 批准号:
2242365 - 财政年份:2024
- 资助金额:
$ 36.97万 - 项目类别:
Standard Grant
Collaborative Research: The role of temporally varying specific storage on confined aquifer dynamics
合作研究:随时间变化的特定存储对承压含水层动态的作用
- 批准号:
2242366 - 财政年份:2024
- 资助金额:
$ 36.97万 - 项目类别:
Standard Grant
I-Corps: minimally invasive deep brain stimulation using temporally interfering electromagnetic waves
I-Corps:使用时间干扰电磁波进行微创深部脑刺激
- 批准号:
2328599 - 财政年份:2023
- 资助金额:
$ 36.97万 - 项目类别:
Standard Grant
CAREER: New Reporters for Temporally-Gated Integration of Neuronal Activity
职业生涯:神经元活动时间门控整合的新报告基因
- 批准号:
2235835 - 财政年份:2023
- 资助金额:
$ 36.97万 - 项目类别:
Standard Grant
EFRI BRAID: Emulating Cerebellar Temporally Coherent Signaling for Ultraefficient Emergent Prediction
EFRI BRAID:模拟小脑时间相干信号以实现超高效紧急预测
- 批准号:
2317974 - 财政年份:2023
- 资助金额:
$ 36.97万 - 项目类别:
Standard Grant
How do vortices live in spatio-temporally complex flows?
涡流如何存在于时空复杂的流动中?
- 批准号:
DP230102188 - 财政年份:2023
- 资助金额:
$ 36.97万 - 项目类别:
Discovery Projects
Development of a Spatially-transferable and Temporally-resolved Urban Corridor Air and Noise pollution model: STUCAN
开发空间可转移和时间解析的城市走廊空气和噪声污染模型:STUCAN
- 批准号:
RGPIN-2018-04845 - 财政年份:2022
- 资助金额:
$ 36.97万 - 项目类别:
Discovery Grants Program - Individual
eXplainable Metric Development on Temporally Evolutional Training of Deep Neural Networks
深度神经网络时间演化训练的可解释度量开发
- 批准号:
572654-2022 - 财政年份:2022
- 资助金额:
$ 36.97万 - 项目类别:
University Undergraduate Student Research Awards
Temporally Adaptive Stochastic Gradient Descent (TASGD)
时间自适应随机梯度下降 (TASGD)
- 批准号:
572648-2022 - 财政年份:2022
- 资助金额:
$ 36.97万 - 项目类别:
University Undergraduate Student Research Awards