Volumetric Optical Integrated Circuit Elements (VOICE)
体积光学集成电路元件(VOICE)
基本信息
- 批准号:1935289
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The fundamental goal of this research project is to develop a route to form high performance photonic devices within the volume of a silicon wafer rather than on its surface, as is generally the case. Photonic devices are integral to many important applications in telecommunications, computing, data storage and transfer, and consumer electronics. Silicon photonics has enabled circuits that are miniaturized and integrated. These technologies will dramatically improve in speed, density, and energy efficiency if they can be successfully integrated at a high enough density as a multi-plane photonic integrated circuit (PIC). Two key projected societal impacts are (1) ultra-high speed data transfer within next generation computers using channels that route light in 3D within a chip or between chips and (2) advanced all-optical signal processing using a PIC that has numerous planes for performing operations. The project also includes the training of undergraduate and graduate researchers in photonic device/circuit theory, microfabrication, metrology, and numerical simulation. Research and teaching will be closely integrated through three of the PI's courses: Materials in Nanotechnology, Integrated Optoelectronics, and Principles of Experimental Research. Participation of students from underrepresented groups will be broadened through undergrad research and by leveraging large existing K-12 outreach initiatives that will impact greater than a thousand students.The PIs propose a proof-of-concept project to realize multiple planes of interconnected micro-optic elements, waveguides, and passive photonic devices within the volume of a silicon wafer. Subsurface gradient refractive index (GRIN) devices will be fabricated within porous silicon (PSi) or silica (PSiO2 = oxidized PSi) via two-photon lithography to selectively polymerize photoresist within the porous host. This direct laser writing (DLW) approach enables index control (nPSi = 1.4-1.9, nPSiO2 = 1.15-1.3) at each voxel. Complex GRIN elements (e.g., compound apochromatic lenses, photonic nanojet emitters, diffractive and photonic bandgap structures, spiral phase plates, and index/mode matching bamboo-shaped tapers) plus conventional silicon photonic elements (e.g., interferometers, gratings, and microring multiplexers and filters) can all be fabricated in a self-aligned manner with 1 micron critical dimensions across a 4" wafer. The research seeks to advance knowledge in the fields of subsurface fabrication and photonic integration. The interdisciplinary team of 2 PIs, 2 grad students, and 2 undergrad students will leverage their experience and training in GRIN PSi and PSiO2 optics, DLW, optical device/circuit theory and design, computational electromagnetics, imaging, metrology, and nanomanufacturing to answer fundamental scientific questions about the fabrication of complex optics by addressing five major goals:1. Investigate and apply polymerization-based index control and optical characteristics in mesoporous scaffold-enabled two-photon lithography.2. Measure the spectral dependence of the refractive index and absorption coefficient (400 - 1700 nm) as well as the 3D point spread function of the writing process.3. Develop software tools to: (a) optimize the 3D index profile to achieve a given optical functionality and (b) determine the necessary two-photon lithography exposure conditions to realize said profile.4. Design, fabricate, characterize, and model novel GRIN elements and subsurface 3D waveguides.5. Demonstrate the aforementioned monolithically integrated 8-plane PIC and optical interposer.Demonstration of previously unachievable photonic geometries and functionalities will not only create a new paradigm for future PIC architectures but will also lead to new scientific applications such as lab-in-chip, interferometry, metrology, imaging, and quantum optics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个研究项目的基本目标是开发一种在硅晶圆内形成高性能光子器件的途径,而不是像一般情况那样在其表面上形成。光子器件在电信、计算、数据存储和传输以及消费电子等许多重要应用中都是不可或缺的。硅光子学使电路小型化和集成化成为可能。如果这些技术能够成功地以足够高的密度集成成多平面光子集成电路(PIC),将显著提高速度、密度和能源效率。预计的两个关键社会影响是(1)下一代计算机中的超高速数据传输,使用在芯片内或芯片之间以3D方式路由光的通道;(2)使用具有多个平面执行操作的PIC进行先进的全光信号处理。该项目还包括对光子器件/电路理论、微加工、计量学和数值模拟方面的本科生和研究生的培训。研究和教学将通过PI的三门课程紧密结合:纳米技术材料、集成光电子学和实验研究原理。来自代表性不足群体的学生将通过本科研究和利用现有的大型K-12外展计划扩大参与范围,这些计划将影响超过一千名学生。pi提出了一个概念验证项目,以实现在硅片体积内互连的微光学元件,波导和无源光子器件的多个平面。亚表面梯度折射率(GRIN)器件将通过双光子光刻技术在多孔硅(PSi)或二氧化硅(PSiO2 =氧化PSi)中制造,以选择性地在多孔宿主体内聚合光刻胶。这种直接激光写入(DLW)方法可以在每个体素上实现索引控制(nPSi = 1.4-1.9, nPSiO2 = 1.15-1.3)。复杂的GRIN元件(例如,复合复消色差透镜,光子纳米射流发射器,衍射和光子带隙结构,螺旋相位板,以及指数/模式匹配的竹形锥体)加上传统的硅光子元件(例如,干涉仪,光栅,微环多路复用器和滤波器)都可以在4英寸晶圆上以1微米的临界尺寸自对准的方式制造。该研究旨在推进地下制造和光子集成领域的知识。由2名pi, 2名研究生和2名本科生组成的跨学科团队将利用他们在GRIN PSi和PSiO2光学,DLW,光学器件/电路理论与设计,计算电磁学,成像,计量学和纳米制造方面的经验和培训,通过解决五个主要目标来回答有关复杂光学制造的基本科学问题:1。介孔支架双光子光刻技术中基于聚合的折射率控制和光学特性的研究与应用测量折射率和吸收系数(400 ~ 1700 nm)的光谱依赖性以及书写过程的三维点扩展函数。开发软件工具:(a)优化3D折射率轮廓以实现给定的光学功能;(b)确定实现所述轮廓所需的双光子光刻曝光条件。设计,制造,表征和建模新型GRIN元件和地下3D波导。演示上述单片集成的8平面PIC和光中介器。以前无法实现的光子几何和功能的演示不仅将为未来的PIC架构创造新的范例,而且还将导致新的科学应用,如芯片实验室,干涉测量,计量,成像和量子光学。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toward the realization of subsurface volumetric integrated optical systems
- DOI:10.1063/5.0059354
- 发表时间:2021-09-27
- 期刊:
- 影响因子:4
- 作者:Richards, Corey A.;Ocier, Christian R.;Braun, Paul V.
- 通讯作者:Braun, Paul V.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lynford Goddard其他文献
Lynford Goddard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lynford Goddard', 18)}}的其他基金
Strategies: Catalyzing Inclusive STEM Experiences All Year Round (CISTEME365)
策略:促进全年包容性 STEM 体验 (CISTEME365)
- 批准号:
1850398 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Spectrally and Temporally Engineered Processing using PhotoElectroChemistry (STEP-PEC)
使用光电化学 (STEP-PEC) 进行光谱和时间工程处理
- 批准号:
1509609 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Theory and Application of Reflective Microring Resonators
职业:反射式微环谐振器的理论与应用
- 批准号:
1055941 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Metallic Nanocluster Surface Coated Nano VCSEL Arrays for Trace Gas Detection
用于痕量气体检测的金属纳米团簇表面涂层纳米 VCSEL 阵列
- 批准号:
0901388 - 财政年份:2009
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
- 批准号:
2327025 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
INTEPS - INtegrated optical ThErmal Phosphorescence System
INTEPS - 集成光学热磷光系统
- 批准号:
10089333 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
3D integrated crystalline UV optical lens-fiber couplers for astronomy
用于天文学的 3D 集成晶体紫外光学透镜光纤耦合器
- 批准号:
DP240103231 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects
6G-MUSICAL - 6G MUltiband Wireless and Optical Signalling for Integrated CommunicAtions, Sensing and Localization
6G-MUSICAL - 用于集成通信、传感和定位的 6G 多频带无线和光信号
- 批准号:
10093329 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
EU-Funded
CAREER: Semiconductor on Nitride PhoXonic Integrated Circuit (SONIC) Platform for Chip-Scale RF and Optical Signal Processing
职业:用于芯片级射频和光信号处理的氮化物 PhoXonic 集成电路 (SONIC) 平台上的半导体
- 批准号:
2340405 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Holographic Integrated Photonics Platform for the Optical Analysis of Biological Samples
用于生物样品光学分析的全息集成光子学平台
- 批准号:
EP/Y036182/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
CRII: CNS: Integrated Sensing and Communication with Optical Wireless: A Retro-reflective Link Design
CRII:CNS:光学无线集成传感和通信:回归反射链路设计
- 批准号:
2245747 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Equipment: MRI Track 1: Acquisition of an integrated physical property measurement system for the electrical, optical, and magnetic characterization of materials
设备:MRI 轨道 1:获取用于材料电学、光学和磁性表征的集成物理特性测量系统
- 批准号:
2319964 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Widely tuneable photonic integrated optical phase lock loop for atmospheric sensing
用于大气传感的广泛可调光子集成光学锁相环
- 批准号:
2868749 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Studentship
A study on integrated nonreciprocal devices using disk resonators and magneto-optical materials
使用盘式谐振器和磁光材料的集成不可逆器件的研究
- 批准号:
23K03977 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)