Refractory Metal Doped Gallium Oxide Sensors for Extreme Environmental Applications

适用于极端环境应用的难熔金属掺杂氧化镓传感器

基本信息

  • 批准号:
    1509653
  • 负责人:
  • 金额:
    $ 36.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

Proposal # 1509653Abstract Title: Refractory metal doped gallium oxide sensors for extreme environment applicationsAbstractNontechnical: Currently, an enormous amount of interest exists in the research and development of combustion processes for energy harvesting. Recent analysis shows that by improving coal-based firing/combustion processes in power plants, a cost saving of up to $409 million a year can be achieved. However, in order for this savings and efficiency improvements to occur, sensors and controls capable of withstanding extreme environments such as high temperatures, highly corrosive atmospheres, and high pressures are in critical demand. Besides the economic benefits of reduced costs, controlled combustion can also eliminate the pollutant emissions that are critically impacting our environment, health and energy resources. Optimization of the combustion processes in power generation systems can be achieved by sensing, monitoring and control of oxygen, which is a measure of the completeness of the process and can lead to enhanced efficiency and reduced greenhouse gas emissions. However, despite the fact that there exists a very high demand for advanced sensors for combustion monitoring and control in power generation systems and automobiles, the existing oxygen sensing technologies suffer from poor response and recovery times as well as long-term stability. Technical: The proposed project is intended to investigate the high-temperature oxygen sensors operational to temperatures greater than 700 degrees Celsius in a corrosive atmosphere for application in power generation systems. The overall objective of the research project is to investigate nanostructured gallium oxide (Ga2O3) based sensors for oxygen sensing, where we propose to conduct in-depth exploration of the role of refractory metals (RM) for doping the gallium oxide to enhance the sensitivity, selectivity, stability (3S) criteria) and reliability of such sensors while at the same time keeping device cost economical. The ultimate objective is to design oxygen sensors that combine rapid response, criteria, reliability, and robustness at extreme environments. Specifically, we will focus on engineering the nanostructured Ga2O3 with controlled dopants. The project work will be mainly directed towards fabricating the nanostructured W-Ga2O3, Mo-Ga2O3 and W-Mo-Ga2O3 sensors and gaining a fundamental understanding of dopant-induced structure-composition-electronic property changes on the oxygen sensor performance. The emphasis is to understand changes in the electronic structure of RM-incorporated Ga2O3 sensor as a result of interaction with oxygen. The obvious goal is to study the chemical reactivity of W-Ga2O3, Mo-Ga2O3 and W-Mo-Ga2O3 sensors and quantify the changes in electronic structure so as to derive a structure-property-performance correlation. The proposed study will provide a better understanding of the nanoscale phenomena, adsorption/desorption processes at nanoscale, and size-dependent reactivity to optimize the conditions to enhance the 3S criteria of the oxygen sensors in addition to response time. The results on the nanostructured W-Ga2O3, Mo-Ga2O3 and W-Mo-Ga2O3 sensors are expected to offer exciting opportunities to design and fabricate oxygen sensors with superior performance compared to the existing ones. The project success will, thus, potentially transform the sensor technology and will have a substantial impact on the investigators and students at the University of Texas at El Paso (UTEP), a Hispanic serving minority institution.
摘要题目:用于极端环境应用的难熔金属掺杂氧化镓传感器摘要非技术:目前,研究和开发用于能量收集的燃烧过程具有巨大的兴趣。最近的分析表明,通过改进发电厂的燃煤/燃烧过程,每年可节省高达4.09亿美元的费用。然而,为了实现这种节省和效率的提高,传感器和控制器能够承受极端环境,如高温、高腐蚀性大气和高压,这是至关重要的。除了降低成本的经济效益外,控制燃烧还可以消除严重影响我们的环境、健康和能源的污染物排放。发电系统中燃烧过程的优化可以通过对氧气的传感、监测和控制来实现,这是对过程完整性的衡量,可以提高效率并减少温室气体排放。然而,尽管发电系统和汽车对先进的燃烧监测和控制传感器有很高的需求,但现有的氧传感技术存在响应和恢复时间较差以及长期稳定性差的问题。技术:拟议项目旨在研究在腐蚀性大气中工作温度超过700摄氏度的高温氧传感器,用于发电系统。该研究项目的总体目标是研究基于纳米结构氧化镓(Ga2O3)的氧传感传感器,我们建议深入探索难熔金属(RM)在掺杂氧化镓方面的作用,以提高传感器的灵敏度、选择性、稳定性(3S)标准和可靠性,同时保持设备成本经济。最终目标是设计在极端环境下结合快速响应、标准、可靠性和鲁棒性的氧传感器。具体来说,我们将重点研究纳米结构Ga2O3的工程控制掺杂剂。该项目工作将主要针对纳米结构W-Ga2O3、Mo-Ga2O3和W-Mo-Ga2O3传感器的制造,并对掺杂诱导的结构-组成-电子性质变化对氧传感器性能的影响有一个基本的了解。重点是了解与氧相互作用的结果,在rm结合的Ga2O3传感器的电子结构的变化。显而易见的目标是研究W-Ga2O3、Mo-Ga2O3和W-Mo-Ga2O3传感器的化学反应性,量化电子结构的变化,从而得出结构-性能-性能的相关性。该研究将提供对纳米级现象、纳米级吸附/解吸过程和尺寸依赖性反应性的更好理解,以优化条件,提高氧传感器的3S标准和响应时间。纳米结构W-Ga2O3、Mo-Ga2O3和W-Mo-Ga2O3传感器的研究结果有望为设计和制造性能优于现有传感器的氧传感器提供令人兴奋的机会。因此,该项目的成功将有可能改变传感器技术,并将对德克萨斯大学埃尔帕索分校(UTEP)的研究人员和学生产生重大影响,这是一所为西班牙裔少数民族服务的大学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ramana Chintalapalle其他文献

A potential biological approach for sustainable disposal of total dissolved solid of brine in civil infrastructure
可持续处置民用基础设施中总溶解固体盐水的潜在生物方法
  • DOI:
    10.1016/j.conbuildmat.2014.11.044
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    B. K. Halder;V. Tandon;Ramana Chintalapalle;Debarshi Roy;A. Tarquin
  • 通讯作者:
    A. Tarquin

Ramana Chintalapalle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ramana Chintalapalle', 18)}}的其他基金

PREM Center for Energy and Biomaterials
PREM 能源和生物材料中心
  • 批准号:
    1827745
  • 财政年份:
    2018
  • 资助金额:
    $ 36.75万
  • 项目类别:
    Continuing Grant

相似国自然基金

Mn-Ni-Cu系all-d-metal Heusler合金的设计制备与磁性形状记忆效 应研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Metal-Na2WO4/SiO2催化甲烷氧化偶联的密度泛函理论研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Metal@ZnO-WO3复合纳米纤维微结构调控及对人呼气检测研究
  • 批准号:
    61901293
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
d-metal Heusler磁相变合金NiMnTi(Co)的多相变路径弹热效应研究
  • 批准号:
    51801225
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
狭叶香蒲重金属转运蛋白HMA(Heavy Metal ATPase)类基因的分离鉴定及功能分析
  • 批准号:
    31701931
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Modulation of spin capacitance through regulating spin moment in transition metal-doped 2D-MoS2-based anodes for application in ion batteries
通过调节过渡金属掺杂 2D-MoS2 基阳极的自旋矩来调节自旋电容,用于离子电池
  • 批准号:
    24K08319
  • 财政年份:
    2024
  • 资助金额:
    $ 36.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research Initiation Award: Highly Stable Nanoparticle-Doped Metal-Organic Frameworks for Applications in Water Purification
研究启动奖:用于水净化应用的高度稳定的纳米颗粒掺杂金属有机框架
  • 批准号:
    2344742
  • 财政年份:
    2023
  • 资助金额:
    $ 36.75万
  • 项目类别:
    Standard Grant
Liquid-Metal-Printed, Modulation-Doped 2D Metal Oxide Transistors
液态金属印刷、调制掺杂 2D 金属氧化物晶体管
  • 批准号:
    2219991
  • 财政年份:
    2022
  • 资助金额:
    $ 36.75万
  • 项目类别:
    Standard Grant
Doped metal oxide electrocatalyst supports with enhanced conductivity
具有增强电导率的掺杂金属氧化物电催化剂载体
  • 批准号:
    RGPIN-2020-05152
  • 财政年份:
    2022
  • 资助金额:
    $ 36.75万
  • 项目类别:
    Discovery Grants Program - Individual
PFI (ERI): Screening and Development of Doped Mixed Metal Oxides for Resistance-Heated Thermal Energy Storage
PFI (ERI):用于电阻加热热能存储的掺杂混合金属氧化物的筛选和开发
  • 批准号:
    2138456
  • 财政年份:
    2022
  • 资助金额:
    $ 36.75万
  • 项目类别:
    Standard Grant
Magnetism of surface-terminations in transition metal doped Co3O4 nanoshapes
过渡金属掺杂 Co3O4 纳米形状表面终止的磁性
  • 批准号:
    560149-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 36.75万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Hydrogen evolution reaction of microwave-synthesized pristine and metal-doped molybdenum carbides: Insights from electrochemical modeling and in situ visualization
微波合成的原始和金属掺杂碳化钼的析氢反应:电化学建模和原位可视化的见解
  • 批准号:
    2130804
  • 财政年份:
    2022
  • 资助金额:
    $ 36.75万
  • 项目类别:
    Standard Grant
Control of electronic properties by improving crystalline quality of phosphorus-doped n-type diamond containing heavy metal atoms
通过改善含重金属原子的磷掺杂n型金刚石的晶体质量来控制电子性能
  • 批准号:
    22K14478
  • 财政年份:
    2022
  • 资助金额:
    $ 36.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Doped metal oxide electrocatalyst supports with enhanced conductivity
具有增强电导率的掺杂金属氧化物电催化剂载体
  • 批准号:
    RGPIN-2020-05152
  • 财政年份:
    2021
  • 资助金额:
    $ 36.75万
  • 项目类别:
    Discovery Grants Program - Individual
Development of mid-infrared femtosecond pulse laser using transition metal ion doped chalcogenides
过渡金属离子掺杂硫族化物中红外飞秒脉冲激光器的研制
  • 批准号:
    21J13586
  • 财政年份:
    2021
  • 资助金额:
    $ 36.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了