Liquid-Metal-Printed, Modulation-Doped 2D Metal Oxide Transistors

液态金属印刷、调制掺杂 2D 金属氧化物晶体管

基本信息

  • 批准号:
    2219991
  • 负责人:
  • 金额:
    $ 41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Liquid Metal Printed Transistors Enhanced with Multilayer 2D Semiconducting Oxide HeterostructuresUltrathin metal oxide semiconductors have exceptional optical, mechanical, and electronic properties that could enable emerging flexible electronics, from resorbable biosensors to low-power displays. Engineering these devices for specific applications requires precise nanoscale control of the transport of electrons for large area devices and systems. However, depositing atomically thin oxides at a large scale while controlling their electrical properties remains technologically challenging. This project overcomes those limitations by leveraging a new form of 2D oxide semiconductors spontaneously formed by native oxidation of liquid gallium and indium to fabricate highly conductive and ultratransparent nanosheets just 2-3 nm thick. The scientific question driving this study is how to precisely control electronic transport in transistors utilizing 2D oxide channels. Our approach involves electrostatic engineering of heterostructures of InOx and GaOx as well as modeling of the density of electronic defects in these channel layers. This work also implements finite element simulations to design low-voltage, high-performance devices that can lead to integration into biomedical sensors, lightweight displays, and other systems that benefit from low-temperature fabrication on flexible polymer substrates. The research plan ties in with planned educational outreach and inclusivity efforts. We build on past efforts, providing engaging research opportunities for a diverse set of undergraduates and graduates while regularly assessing the downstream impact. The planned recorded remote laboratories based on the science of conductivity of liquid metals will deliver content for powering remote learning opportunities for K-12 and undergraduate engineering education. The impact of these activities will be to broaden participation in STEM and strengthen the engineering workforce.The primary goal of this project is to develop a new paradigm of two-dimensional (2D) metal oxide transistors enhanced through quantum modulation doping. Towards this end, this work develops a fundamental understanding of how heterointerfaces can be engineered to enhance electronic transport in channels consisting of heterostructures of quantum confined 2-3 nm thick 2D wide bandgap oxide semiconductors. This strategy can induce 2D electron gas formation and band-like transport characteristics such as temperature-independent mobility. However, the fundamental gap limiting applications of these phenomena is the connection between nanoscale electrostatic interface engineering and electronic transport in oxide semiconductors. A fundamental innovation in this program is to utilize liquid metal printing to fabricate vertically stacked heterostructures channels in which high-mobility, efficient electron transport is produced by the interfacial conduction band energy offset (ΔEc) of 2D InOx and GaOx. Detailed device characterization measurements probe the hypothesis that this modulation doping of 2D heterointerfaces can engineer band-like transport by passivating interface traps and inducing bulk electron accumulation. A complementary goal is to develop TCAD simulations based on density of states data to design electrostatically optimal multilayer architectures, identify the impact of high-k dielectric integration, and design transistors for low-voltage unipolar logic circuits. This combination of experiments and simulations can provide the fundamental device engineering knowledge needed to leverage this scalable fabrication method for various flexible electronicsThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
采用多层2D半导体氧化物异质结构增强的液态金属印刷晶体管超薄金属氧化物半导体具有出众的光学、机械和电子特性,可以实现从可吸收生物传感器到低功率显示器的新兴柔性电子产品。为特定应用设计这些设备需要对大面积设备和系统的电子传输进行精确的纳米级控制。然而,在控制其电学性能的同时大规模沉积原子薄的氧化物在技术上仍然具有挑战性。该项目利用液态镓和铟的自然氧化形成的新型2D氧化物半导体来制造厚度仅为2-3 nm的高导电和超透明纳米薄片,从而克服了这些限制。推动这项研究的科学问题是如何利用2D氧化物通道精确控制晶体管中的电子传输。我们的方法包括对Inox和GaOx异质结构的静电工程,以及对这些沟道层中电子缺陷密度的模拟。这项工作还实施了有限元模拟,以设计低电压、高性能的器件,这些器件可以集成到生物医学传感器、轻型显示器和其他受益于柔性聚合物基板低温制造的系统中。该研究计划与计划中的教育推广和包容性努力相一致。我们在过去努力的基础上,为不同的本科生和毕业生提供引人入胜的研究机会,同时定期评估下游影响。计划中的以液态金属导电性科学为基础的有记录的远程实验室将提供内容,为K-12和本科工程教育提供远程学习机会。这些活动的影响将是扩大对STEM的参与并加强工程工作。该项目的主要目标是开发一种通过量子调制掺杂增强的二维(2D)金属氧化物晶体管的新范例。为此,这项工作对如何设计异质界面以增强由量子受限2-3 nm厚2D宽带隙氧化物半导体的异质结组成的通道中的电子传输有了基本的理解。这种策略可以诱导二维电子气的形成和带状输运特性,如与温度无关的迁移率。然而,这些现象的基本禁带限制应用是纳米级静电界面工程和氧化物半导体中的电子输运之间的联系。该方案的一个根本创新是利用液态金属印刷来制造垂直堆叠的异质结构沟道,其中通过2DIOx和GaOx的界面导带能量偏置(ΔEC)产生高迁移率、高效率的电子传输。详细的器件特性测量探索了这样一种假设,即2D异质界面的调制掺杂可以通过钝化界面陷阱和诱导体电子积累来实现带状输运。一个互补的目标是开发基于状态数据密度的TCAD仿真,以设计静电优化的多层体系结构,识别高k介质集成的影响,并设计用于低电压单极逻辑电路的晶体管。这种实验和模拟的结合可以提供利用这种可扩展制造方法用于各种柔性电子产品所需的基本设备工程知识。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Continuous Liquid Metal Printing for Rapid Metal Oxide TFT Integration
用于快速金属氧化物 TFT 集成的连续液态金属打印
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Scheideler其他文献

William Scheideler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Scheideler', 18)}}的其他基金

EPM: Engineering Transparent Conducting Superlattices from Liquid Metal Printed 2D Oxides
EPM:利用液态金属打印的二维氧化物设计透明导电超晶格
  • 批准号:
    2202501
  • 财政年份:
    2022
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant

相似国自然基金

Mn-Ni-Cu系all-d-metal Heusler合金的设计制备与磁性形状记忆效 应研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Metal-Na2WO4/SiO2催化甲烷氧化偶联的密度泛函理论研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Metal@ZnO-WO3复合纳米纤维微结构调控及对人呼气检测研究
  • 批准号:
    61901293
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
d-metal Heusler磁相变合金NiMnTi(Co)的多相变路径弹热效应研究
  • 批准号:
    51801225
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
狭叶香蒲重金属转运蛋白HMA(Heavy Metal ATPase)类基因的分离鉴定及功能分析
  • 批准号:
    31701931
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SBIR Phase I: CAS: Biomimetic 3D Printed Metal Mold to Mass Produce Dry-Pressed, Modular, Biophilic Concrete Reef Substrate
SBIR 第一阶段:CAS:仿生 3D 打印金属模具,用于批量生产干压、模块化、亲生物混凝土珊瑚礁基底
  • 批准号:
    2334667
  • 财政年份:
    2024
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
3D printed foundry hollowware - step change improvement to metal casting
3D 打印铸造空心器 - 金属铸造的逐步改进
  • 批准号:
    10045757
  • 财政年份:
    2023
  • 资助金额:
    $ 41万
  • 项目类别:
    Collaborative R&D
CAREER: 3D Printed Carbon-Metal Nanohybrid Aerogels for Highly Efficient Adsorptive/Catalytic Removal of PFASs
职业:3D 打印碳金属纳米杂化气凝胶,用于高效吸附/催化去除 PFAS
  • 批准号:
    2331082
  • 财政年份:
    2023
  • 资助金额:
    $ 41万
  • 项目类别:
    Continuing Grant
EPM: Engineering Transparent Conducting Superlattices from Liquid Metal Printed 2D Oxides
EPM:利用液态金属打印的二维氧化物设计透明导电超晶格
  • 批准号:
    2202501
  • 财政年份:
    2022
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
CAREER: 3D Printed Carbon-Metal Nanohybrid Aerogels for Highly Efficient Adsorptive/Catalytic Removal of PFASs
事业:3D 打印碳金属纳米杂化气凝胶,用于高效吸附/催化去除 PFAS
  • 批准号:
    2145128
  • 财政年份:
    2022
  • 资助金额:
    $ 41万
  • 项目类别:
    Continuing Grant
Reliability and design of 3D printed metal structures
3D 打印金属结构的可靠性和设计
  • 批准号:
    DP210103103
  • 财政年份:
    2021
  • 资助金额:
    $ 41万
  • 项目类别:
    Discovery Projects
PhD Studentship in Remote Robotic Laser Inspection of Welds and 3D Metal Printed Components
焊缝和 3D 金属打印部件远程机器人激光检测博士生
  • 批准号:
    2610580
  • 财政年份:
    2021
  • 资助金额:
    $ 41万
  • 项目类别:
    Studentship
Automated robotic in-process inspection of 3D printed & welded metal components
3D 打印的自动化机器人过程中检查
  • 批准号:
    2347070
  • 财政年份:
    2020
  • 资助金额:
    $ 41万
  • 项目类别:
    Studentship
SBIR Phase I: Engineering a novel 3D metal printed orthodontic system for lingual attachment-enabled clear aligner therapy
SBIR 第一阶段:设计新型 3D 金属打印正畸系统,用于支持舌侧附着的透明矫正器治疗
  • 批准号:
    1938533
  • 财政年份:
    2020
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
Improving Biocompatibility of 3D Printed Metal Scaffolds
提高 3D 打印金属支架的生物相容性
  • 批准号:
    552562-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 41万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了