Real-time Ab Initio Modeling of Electric Machines

电机实时从头建模

基本信息

  • 批准号:
    1509804
  • 负责人:
  • 金额:
    $ 28.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Nearly all electricity is produced through electric generators, and 65% of industrial electricity is consumed by electric motors. By 2030, the annual energy consumption of electric motors is expected to exceed 13 quadrillion watt-hours. The ability to undertake optimal design and accurate analysis of electric machines is important to the success of any sustainable energy policy. Weight-critical applications, such as electrified transportation fleets, require radical structural designs with a high power density, high efficiency, and wide operating ranges. To facilitate such aggressive industry-wide transformation, physics-based machine models and high-performance computer simulation tools are indispensable. The fundamental compromise between modeling fidelity and simulation speed for design and analysis of electric machines is investigated in this project. The project is expected to enable a quantum leap in desktop-scale analysis that might not otherwise be achievable until several decades of computational advances lead to the computational capacity needed for real-time analysis of electric machines. First-principle models will be constructed systematically to mimic the characteristics of hardware prototypes, and free the designer from needing expert knowledge and approximations. This is a superior alternative to the existing approaches, namely behavioral approaches that use many simplifying assumptions that compromise model performance, and physical models, which are prohibitively slow. Hybrid order-reduction algorithms and massively parallel hardware-centric tools will accelerate the simulation by up to a million times faster, providing a suitable environment for performance analysis, design optimization, and fault prediction and diagnostics of electric machines. Planned knowledge dissemination of the research results will contribute to multi-disciplinary curricula that help prepare the next generation of power engineers, and to materials that help update the existing workforce to be able to address challenges of the emerging energy conversion devices and systems. The team will engage in STEM-related outreach activities to high school students as well as under-represented groups at UT Arlington, which is a Hispanic-serving institution. The project will investigate an analytical paradigm for electric machines using first-principle physics, and achieve real-time analysis of the resulting ab initio models. The vision is to shift the modeling paradigm away from outdated rule-of-thumb approaches and move toward physics-based yet intuitive models that account for emerging construction materials, computational capabilities, and power electronics-enabled control. The research objectives are to i) construct universal and physical models of electric machines without making heuristic or empirical assumptions common in existing behavioral models, ii) investigate model order reduction algorithms tailored to the resulting ab initio models, iii) map the reduced-order models to massively-parallel hardware-centric simulation platforms to speed up the model execution by as much as six orders of magnitude, and iv) experimentally validate all research findings using prototypes of various machine types commonly used in electric vehicles, electric aircraft, and wind energy conversion systems. This project highlights the fundamental cross-cutting challenges across the domains of power electronics, control systems theory, and scientific computing relevant to electromechanical energy conversion systems. Investigation of such models and tools will enable significantly reduced design cycle time for more efficient electric machines, realistic representation of machine-drive systems for smarter control of energy flow, and co-simulation of temporally-diverse dynamic systems involving both the field equations and grid dynamics for electric machine-to-power grid integration (e.g., in wind farms).
几乎所有的电力都是通过发电机产生的,65%的工业用电是由电动机消耗的。到2030年,电动机的年能耗预计将超过13千万亿瓦时。对电机进行优化设计和准确分析的能力对任何可持续能源政策的成功都很重要。重量关键型应用,如电气化运输车队,需要具有高功率密度、高效率和宽工作范围的激进结构设计。为了促进这种积极的全行业转型,基于物理的机器模型和高性能计算机仿真工具是必不可少的。本项目研究了电机设计与分析中建模保真度与仿真速度之间的基本妥协。该项目有望实现桌面级分析的量子飞跃,除非几十年的计算进步导致电力机器实时分析所需的计算能力,否则可能无法实现。将系统地构建第一原理模型来模拟硬件原型的特征,并将设计师从需要专家知识和近似中解放出来。这是现有方法的一个更好的选择,即行为方法,它使用许多简化的假设,损害模型性能,和物理模型,这是令人望而却步的缓慢。混合降阶算法和以硬件为中心的大规模并行工具将使仿真速度提高100万倍,为电机的性能分析、设计优化、故障预测和诊断提供合适的环境。有计划的知识传播研究成果将有助于多学科课程,帮助准备下一代电力工程师,并有助于更新现有的劳动力,以应对新兴的能源转换设备和系统的挑战。该团队将在德克萨斯大学阿灵顿分校(UT Arlington)向高中生以及代表性不足的群体开展与stem相关的外展活动,这是一所为西班牙裔服务的机构。该项目将利用第一原理物理学研究电机的分析范式,并实现对从头算模型的实时分析。其愿景是将建模范式从过时的经验法则方法转变为基于物理的直观模型,这些模型考虑了新兴的建筑材料、计算能力和电力电子支持的控制。研究目标是:i)构建电机的通用和物理模型,而不做现有行为模型中常见的启发式或经验假设;ii)研究针对生成的从头算模型定制的模型降阶算法;iii)将降阶模型映射到大规模并行的以硬件为中心的仿真平台,以加快模型执行速度多达6个数量级。iv)使用电动汽车、电动飞机和风能转换系统中常用的各种机器类型的原型,对所有研究结果进行实验验证。该项目强调了与机电能量转换系统相关的电力电子、控制系统理论和科学计算领域的基本交叉挑战。对这些模型和工具的研究将大大缩短更高效电机的设计周期时间,为更智能的能量流控制提供机器驱动系统的真实表示,以及对涉及电场方程和电网动力学的时间变化动态系统的联合模拟,以实现电机与电网的集成(例如,在风力发电场)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ali Davoudi其他文献

Order-reduction techniques for magnetic components in power electronics
电力电子中磁性元件的降阶技术
ATLAS TileCal low voltage power supply upgrade hardware and testing
  • DOI:
    10.1016/j.nima.2018.10.198
  • 发表时间:
    2019-08-21
  • 期刊:
  • 影响因子:
  • 作者:
    Michael Hibbard;Seyedali Moayedi;Haleh Hadavand;Ali Davoudi; on behalf of the ATLAS Tile Calorimeter System
  • 通讯作者:
    on behalf of the ATLAS Tile Calorimeter System
A Simple Explicit Method of Representing Magnetic Saturation of Salient-Pole Synchronous Machines in Both Rotor Axes Using Matlab-Simulink
用Matlab-Simulink表示凸极同步电机两轴磁饱和的简单显式方法

Ali Davoudi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ali Davoudi', 18)}}的其他基金

Computational prototyping framework for power processing and energy conversion systems
功率处理和能量转换系统的计算原型框架
  • 批准号:
    1137354
  • 财政年份:
    2011
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Computational prototyping framework for power processing and energy conversion systems
功率处理和能量转换系统的计算原型框架
  • 批准号:
    1002030
  • 财政年份:
    2010
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
  • 批准号:
    82360504
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
  • 批准号:
    82305023
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
  • 批准号:
    62171167
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
  • 批准号:
    31971706
  • 批准年份:
    2019
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
Time-of-Flight深度相机多径干扰问题的研究
  • 批准号:
    61901435
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
高频数据波动率统计推断、预测与应用
  • 批准号:
    71971118
  • 批准年份:
    2019
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
  • 批准号:
    71771224
  • 批准年份:
    2017
  • 资助金额:
    49.0 万元
  • 项目类别:
    面上项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Measurement of ab-initio physiomarker using wearable sensors to predict aneurysm growth and formation
使用可穿戴传感器测量从头开始的生理标志物以预测动脉瘤的生长和形成
  • 批准号:
    10802098
  • 财政年份:
    2022
  • 资助金额:
    $ 28.5万
  • 项目类别:
Measurement of ab-initio physiomarker using wearable sensors to predict aneurysm growth and formation
使用可穿戴传感器测量从头开始的生理标志物以预测动脉瘤的生长和形成
  • 批准号:
    10390070
  • 财政年份:
    2022
  • 资助金额:
    $ 28.5万
  • 项目类别:
B cell lineage directed rational vaccine strategies based on CAP256SU Env-Ab coevolution
基于 CAP256SU Env-Ab 协同进化的 B 细胞谱系定向合理疫苗策略
  • 批准号:
    10617381
  • 财政年份:
    2022
  • 资助金额:
    $ 28.5万
  • 项目类别:
Real-time reaction dynamics of micro-solvated clusters by direct ab initio MD method
通过直接从头MD方法研究微溶剂化团簇的实时反应动力学
  • 批准号:
    21K04973
  • 财政年份:
    2021
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Combining germline-targeting, B cell immunofocusing and Env-Ab co-evolution strategies to induce HIV Envelope V2-apex broadly neutralizing antibodies
结合种系靶向、B 细胞免疫聚焦和 Env-Ab 共同进化策略来诱导 HIV 包膜 V2-apex 广泛中和抗体
  • 批准号:
    10380767
  • 财政年份:
    2021
  • 资助金额:
    $ 28.5万
  • 项目类别:
Combining germline-targeting, B cell immunofocusing and Env-Ab co-evolution strategies to induce HIV Envelope V2-apex broadly neutralizing antibodies
结合种系靶向、B 细胞免疫聚焦和 Env-Ab 共同进化策略来诱导 HIV 包膜 V2-apex 广泛中和抗体
  • 批准号:
    10599237
  • 财政年份:
    2021
  • 资助金额:
    $ 28.5万
  • 项目类别:
Non-REM (NREM) on synapse plasticity and beta amyloid (aB) accumulation in mice: impact on aging and Alzheimer's
非快速眼动 (NREM) 对小鼠突触可塑性和 β 淀粉样蛋白 (aB) 积累的影响:对衰老和阿尔茨海默病的影响
  • 批准号:
    9921269
  • 财政年份:
    2019
  • 资助金额:
    $ 28.5万
  • 项目类别:
Multiscale ab initio QM/MM and Machine Learning Methods for Accelerated Free Energy Simulations
用于加速自由能模拟的多尺度从头 QM/MM 和机器学习方法
  • 批准号:
    10696727
  • 财政年份:
    2019
  • 资助金额:
    $ 28.5万
  • 项目类别:
Engineered CTL with Inducible Ab Secretion; a Tripartite attack on HIV Reservoirs
具有可诱导抗体分泌的工程 CTL;
  • 批准号:
    9049767
  • 财政年份:
    2016
  • 资助金额:
    $ 28.5万
  • 项目类别:
Engineered CTL with Inducible Ab Secretion; a Tripartite attack on HIV Reservoirs
具有可诱导抗体分泌的工程 CTL;
  • 批准号:
    9768949
  • 财政年份:
    2016
  • 资助金额:
    $ 28.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了