SusChEM Collaborative Research: Biocomposite Biocatalysts formed by Desiccation of Living Cells on Porous Substrates for Recycling Gaseous Carbon to Fuels and Chemicals

SusChEM 合作研究:通过多孔基质上的活细胞干燥形成的生物复合生物催化剂,用于将气态碳回收为燃料和化学品

基本信息

  • 批准号:
    1510072
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

1510072 Flickinger, Michael C. Algae trap and recycle enormous quantities of greenhouse gases (GHGs) such as carbon dioxide each year. This project will develop methods to fabricate biocomposite materials containing highly concentrated non-growing cyanobacteria, or algae, concentrated on or within paper or fabricated as multi-layered materials and hydrated through channels. These artificial leaf-like biocomposite materials could be used to harvest sunlight and recycle GHG carbon into fuels and chemicals. This project will engineer algae to tolerate drying so that desiccated biocomposites can be stored and shipped without loss of reactivity and hydrated at the site of use. Using non-growing dry-stabilized cyanobacteria or algae in biocomposite materials to trap solar energy will require significantly less water and is more efficient in trapping GHGs than using growing algae suspended in photobioreactors. This project will reveal molecular mechanisms for preserving the viability and reactivity during controlled drying of cyanobacteria and Chlamydomonas reinhardtii. Methods will be developed to sustain the photoreactivity of non-growing algae, enhance CO2 absorption and significantly extend their catalytic life embedded within composite materials when rehydrated. This will be investigated by approaches to (i) optimize biocomposite nanoporous microstructure, including providing nutrients and recovering gases by engineered microchannels, (ii) optimize biopreservation using osmoprotectant carbohydrate glasses, control desiccation rate and determine critical residual bound and free water surrounding and within the cells monitored by Raman microspectroscopy plus desiccation stress induced reporters, and (iii) apply synthetic biology to desiccation-sensitive algae to engineer the trehalose transport system from Polyplodium vanderplanki into C. reinhardtii. This has been demonstrated using the CHO TRET1 cell line to enable trehalose transport into CHO cells to enhance dry stabilization. The team of investigators include a microbial biotechnologist expert in biocomposites, a soft matter expert who pioneered biocolloidal live cell assembly and a mechanical engineer with expertise in the anhydrobiology engineering of nucleated cells and controlled drying rate monitored by Raman microspectroscopy. Biocomposite materials containing microchannels and layers of synergistic dry stabilized live cells could provide a new way for carbon recycling. This project will provide cross-disciplinary STEM education for engineers, who will work in a multidisciplinary project spanning chemical engineering, nanoscience, mechanical engineering, microfluidics, synthetic biology, anhydrobiology and reaction kinetics.This award by the Biotechnology and Biochemical Engineering Program of the CBET Division is co-funded by the Systems and Synthetic Biology Program of the Division of Molecular and Cellular Biology.
1510072 Flickinger,Michael C. 藻类每年捕获并回收大量温室气体(GHG),例如二氧化碳。 该项目将开发制造生物复合材料的方法,这些材料含有高度浓缩的非生长蓝藻或藻类,集中在纸上或纸内,或制造成多层材料并通过通道水合。这些人造树叶状生物复合材料可用于收集阳光,并将温室气体碳回收为燃料和化学品。 该项目将设计藻类以耐受干燥,以便干燥的生物复合材料可以在使用现场储存和运输而不会失去反应性和水合作用。 在生物复合材料中使用非生长的干稳定蓝藻或藻类来捕获太阳能将需要显著更少的水,并且比使用悬浮在光生物反应器中的生长藻类更有效地捕获温室气体。这个项目将揭示在控制干燥过程中蓝藻和莱茵衣藻的生存能力和反应性的分子机制。 将开发方法来维持非生长藻类的光反应性,增强二氧化碳吸收,并显着延长其催化寿命嵌入复合材料时,再水化。这将通过以下方法来研究:(i)优化生物复合材料纳米多孔微结构,包括通过工程微通道提供营养物和回收气体,(ii)使用生物保护剂碳水化合物玻璃优化生物保存,控制干燥速率并确定通过拉曼显微光谱加上干燥应力诱导的报告物监测的细胞周围和细胞内的临界残留结合水和游离水,以及(iii)将合成生物学应用于干燥敏感藻类,以将来自范氏多原藻的海藻糖转运系统工程化到C.莱因哈德氏菌 这已经使用CHO TRET 1细胞系证明,能够将海藻糖转运到CHO细胞中,以增强干燥稳定性。 研究人员团队包括生物复合材料方面的微生物生物技术专家,开创生物胶体活细胞组装的软物质专家和具有有核细胞脱水生物学工程专业知识的机械工程师,以及通过拉曼显微光谱监测的受控干燥速率。 含有微通道和协同干稳定活细胞层的生物复合材料可以为碳循环提供新的途径。该项目将为工程师提供跨学科的STEM教育,他们将在化学工程,纳米科学,机械工程,微流体,合成生物学,脱水生物学和反应动力学的多学科项目中工作。该奖项由CBET部门的生物技术和生物化学工程项目共同资助,由分子和细胞生物学部门的系统和合成生物学项目共同资助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Orlin Velev其他文献

Orlin Velev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Orlin Velev', 18)}}的其他基金

CAS: Novel Principles of Fabricating High-Performance Sustainable Packaging Films from Hierarchically Reinforced Biopolymers
CAS:用分级增强生物聚合物制造高性能可持续包装薄膜的新原理
  • 批准号:
    2233399
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
EAGER: New superdiffusive pastes from self-motile active particles with extreme penetration capabilities enabling breakthrough biomedical technologies
EAGER:由自驱动活性颗粒制成的新型超扩散糊剂,具有极高的渗透能力,可实现突破性的生物医学技术
  • 批准号:
    2133983
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Next Generation Colloidal Origami: Assembly of Directionally-Interacting Microcubes
下一代胶体折纸:定向相互作用微立方体的组装
  • 批准号:
    1935248
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Manufacturing of Nanofibrillated Soft Dendritic Particles Using Turbulent Liquid Shear
利用湍流液体剪切制造纳米原纤化软树枝状颗粒
  • 批准号:
    1825476
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Establishing the principles and demonstrating the unique properties of novel reconfigurable nano- and microparticle structures bound by liquid bridges
建立原理并展示由液桥结合的新型可重构纳米和微米颗粒结构的独特性质
  • 批准号:
    1604116
  • 财政年份:
    2016
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
AIR: Transforming nanofiber technology through scalable fabrication
AIR:通过可扩展的制造改变纳米纤维技术
  • 批准号:
    1127793
  • 财政年份:
    2011
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
A New Paradigm for Scalable Fabrication of Polymer Nanofibers by Bulk Shear and Phase Separation
通过体积剪切和相分离可扩展制造聚合物纳米纤维的新范例
  • 批准号:
    0927554
  • 财政年份:
    2009
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
NER: Large Scale Synthesis and Assembly of Micro- and Nanoparticles with Dipolar Charge and Anisotropic Shape
NER:具有偶极电荷和各向异性形状的微米和纳米粒子的大规模合成和组装
  • 批准号:
    0403462
  • 财政年份:
    2004
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CAREER: Colloidal Assembly and Transport Using Dielectrophoresis and Novel Media
职业:使用介电泳和新型介质进行胶体组装和运输
  • 批准号:
    0238636
  • 财政年份:
    2003
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
NER: Bioelectronic Interfacing of Living Cells via Self-Assembled Microwires
NER:通过自组装微线实现活细胞的生物电子接口
  • 批准号:
    0210656
  • 财政年份:
    2002
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324346
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324345
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
SusChEM: Collaborative Research: Identification of the critical length scales and chemistries responsible for the anti-fouling properties of heterogeneous surfaces
SusChEM:合作研究:确定负责异质表面防污性能的临界长度尺度和化学成分
  • 批准号:
    2023847
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
SusChem Collaborative Research: Process Optimization of Novel Routes for the Production of bio-based Para-Xylene
SusChem 合作研究:生物基对二甲苯生产新路线的工艺优化
  • 批准号:
    2005905
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
SusChEM: Collaborative Research: Efficient biological activation and conversion of short-chain hydrocarbons
SusChEM:合作研究:短链碳氢化合物的高效生物活化和转化
  • 批准号:
    1938893
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Engineering the thermotolerant yeast Kluyveromyces marxianus for the synthesis of biobased chemicals
合作研究:SusChEM:改造耐热酵母马克斯克鲁维酵母用于合成生物基化学品
  • 批准号:
    1803630
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Engineering the thermotolerant yeast Kluyveromyces marxianus for the synthesis of biobased chemicals
合作研究:SusChEM:改造耐热酵母马克斯克鲁维酵母用于合成生物基化学品
  • 批准号:
    1803677
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
SusChEM: Collaborative Research: Environmental Fate and Effects of Dichloroacetamide Safeners: An Overlooked Class of Emerging Contaminants?
SusChEM:合作研究:二氯乙酰胺安全剂的环境命运和影响:一类被忽视的新兴污染物?
  • 批准号:
    1702610
  • 财政年份:
    2017
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Unlocking the fundamental mechanisms that underlie selectivity in oleochemical producing enzymes
合作研究:SusChEM:解锁油脂化学生产酶选择性的基本机制
  • 批准号:
    1703504
  • 财政年份:
    2017
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
SusChEM: Collaborative Research: Decoupling Structure and Surface Chemistry Impacts of Carbon Nanomaterials on Environmentally Relevant Electrochemical and Biological Activity
SusChEM:合作研究:解耦碳纳米材料的结构和表面化学对环境相关电化学和生物活性的影响
  • 批准号:
    1709031
  • 财政年份:
    2017
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了