UNS: Mechanical/Chemical Failure of Solid Electrolyte Interphase in Lithium-ion Batteries: Understanding Its Mechanisms and Suppressing Its Onset
UNS:锂离子电池中固体电解质界面的机械/化学失效:了解其机制并抑制其发生
基本信息
- 批准号:1510085
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Jonghyun Park Proposal Number: 1510085Lithium ion batteries support the development of sustainable energy systems by storing electricity generated by renewable resources such as wind and solar energy, or by powering zero-emission electric vehicles charged by electricity from renewable resources. However, current rechargeable lithium ion batteries can hold only about 10% of their theoretical energy content, and new concepts are needed to improve energy storage capacity and power discharge rate. The addition of the metal germanium to lithium ion battery electrodes offers the potential to improve both storage capacity and power. However, the germanium swells significantly upon charging and discharging, which cracks the battery and renders it useless. The goals of this project are to determine the mechanisms of the failure process, and then to use this fundamental understanding to develop coating materials and processes for the germanium particles that will control the swelling behavior. The educational activities associated with this project include efforts to broaden participation by involving undergraduates from nearly Lincoln University of Missouri in the proposed research.The use of geranium (Ge) metal in the solid interface layer of the anode of lithium ion batteries offers the potential for high theoretical electrochemical energy storage capacity and power discharge rate. However, upon repeated charge/discharge cycles, the solid electrolyte interface layer of the anode breaks down. The damage to the solid electrolyte layer is due to the mechanical volume change in Ge metal during lithium-ion insertion (charging) and extraction (discharge), which causes cracks and pulverization of this layer that lead to loss of electrode contact and dissolution of the solid electrolyte layer into the electrolyte. The goals of the research are to characterize the mechanisms of failure in the Ge anode, and then use this fundamental understanding to develop fabrication strategies for suppressing these damage processes by controlling internal structure of the solid electrolyte layer containing Ge nanoparticles, as well as its interface with active materials. The mechanisms of failure will be elucidated by characterizing mechanical strength and chemical dissolution rate of the solid interface layer components. The internal structure of the solid interface layer will be controlled by using Atomic Layer Deposition (ALD) to coat additive materials, for example metal oxides, onto Ge nanoparticles in the attempt to reduce stress upon lithium ion insertion and extraction. A multiscale model will be developed that couples the nanoparticle level behavior in the solid interface layer to electrochemical cell operation to predict the conditions that trigger solid interface layer failure and its subsequent effect on battery performance. This model will then be used to identify strategies to optimize the ALD materials and process for improved mechanical stability and battery performance. To connect the research to education, the PI will introduce energy materials and battery design concepts in a capstone mechanical engineering capstone design course, and will give demonstrations on lithium-ion battery coin cell assembly for undergraduate and K-12 students at the Missouri University of Science and Technology.
PI: Jonghyun Park提案号:1510085锂离子电池通过存储风能和太阳能等可再生资源产生的电力,或为使用可再生资源充电的零排放电动汽车提供动力,支持可持续能源系统的发展。然而,目前的可充电锂离子电池只能容纳其理论能量含量的10%左右,需要新的概念来提高储能容量和放电率。将金属锗添加到锂离子电池电极中,有可能提高存储容量和功率。然而,锗在充放电过程中会明显膨胀,这会使电池破裂,使电池失效。该项目的目标是确定失效过程的机制,然后利用这一基本认识来开发锗粒子的涂层材料和工艺,以控制膨胀行为。与此项目相关的教育活动包括努力扩大参与,包括密苏里州林肯大学的本科生参与拟议的研究。在锂离子电池正极的固体界面层中使用锗金属,具有较高的理论电化学储能容量和放电倍率的潜力。然而,在重复的充放电循环中,阳极的固体电解质界面层被击穿。固体电解质层的损坏是由于锂离子插入(充电)和提取(放电)过程中Ge金属的机械体积变化,导致该层出现裂纹和粉碎,从而导致电极失去接触,固体电解质层溶解到电解质中。本研究的目标是表征锗阳极的失效机制,然后利用这一基本认识来开发制造策略,通过控制含有锗纳米颗粒的固体电解质层的内部结构,以及它与活性材料的界面来抑制这些损伤过程。通过表征固体界面层组分的机械强度和化学溶解速率来阐明其破坏机制。固体界面层的内部结构将通过使用原子层沉积(ALD)来控制,将添加剂(例如金属氧化物)涂覆在Ge纳米颗粒上,以减少锂离子插入和提取时的应力。将开发一个多尺度模型,将固体界面层中的纳米颗粒水平行为与电化学电池操作耦合,以预测触发固体界面层失效的条件及其对电池性能的后续影响。然后,该模型将用于确定优化ALD材料和工艺的策略,以提高机械稳定性和电池性能。为了将研究与教育联系起来,PI将在顶点机械工程顶点设计课程中介绍能源材料和电池设计概念,并将为密苏里科技大学的本科生和K-12学生演示锂离子电池硬币电池组装。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonghyun Park其他文献
Low Resistivity ITO Thin Films Deposited by NCD Technique at Low Temperature: Variation of Tin Concentration
NCD技术低温沉积低电阻率ITO薄膜:锡浓度的变化
- DOI:
10.1149/1.3467802 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
S. Pammi;A. Chanda;Jun;Jonghyun Park;C. Cho;Won;Soon - 通讯作者:
Soon
Interactivity of Neural Representations for Perceiving Shared Social Memory
感知共享社会记忆的神经表征的交互性
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jeesung Ahn;Hye;Jonghyun Park;Sanghoon Han - 通讯作者:
Sanghoon Han
A Tensor Voting for Corrupted Region Inference and Text Image Segmentation
用于损坏区域推理和文本图像分割的张量投票
- DOI:
10.1007/978-3-540-69423-6_73 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Jonghyun Park;Jaemyeong Yoo;Gueesang Lee - 通讯作者:
Gueesang Lee
Microstructure-Controlled 3D Electrodes for Lithium-Ion Batteries
用于锂离子电池的微结构控制 3D 电极
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jie Li;Xinhua Liang;R. Panat;Jonghyun Park - 通讯作者:
Jonghyun Park
Recognition of Text in Wine Label Images
酒标图像中的文本识别
- DOI:
10.1109/ccpr.2009.5343972 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Junsik Lim;Soohyung Kim;Jonghyun Park;Gueesang Lee;Hyungjeong Yang;Chilwoo Lee - 通讯作者:
Chilwoo Lee
Jonghyun Park的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonghyun Park', 18)}}的其他基金
EAGER: SARE: Security and Functionality of Energy Storage Devices from an External Electromagnetic Attack
EAGER:SARE:储能设备免受外部电磁攻击的安全性和功能
- 批准号:
2028992 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Multiscale Manufacturing for Advanced Energy Storage Devices
先进储能设备的多规模制造
- 批准号:
1917055 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Additive Manufacturing of Mechanically Strong and Electrochemically Robust Porous Electrodes for Ultra-High Energy Density Batteries
GOALI/合作研究:用于超高能量密度电池的机械强度和电化学鲁棒性多孔电极的增材制造
- 批准号:
1563029 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Optimal Energy Scheduling in Microgrids with Photovoltaic (PV) Generation and Energy Storage Systems
具有光伏 (PV) 发电和储能系统的微电网中的最优能源调度
- 批准号:
1610396 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
GOALI: Battery Health Dynamics and Its Management
目标:电池健康动态及其管理
- 批准号:
1538415 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Development of innovative multi-material joining technology for CN using mechanical and chemical effects
利用机械和化学效应开发创新的 CN 多材料连接技术
- 批准号:
23K03593 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Realizing Alternative Cements with Chemical Kinetics: Tuned Mechanical–Chemical Properties of Cementitious Magnesium Silicate Hydrates by Multi-Scale Synthetic Control
职业:利用化学动力学实现替代水泥:通过多尺度合成控制调整胶凝硅酸镁水合物的机械和化学性能
- 批准号:
2342381 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Challenge of high concentration hydrogen storage in fullerenes utilizing chemical-mechanical reaction
利用化学机械反应在富勒烯中高浓度储氢的挑战
- 批准号:
22K18757 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Striking a balance: mapping the structural stability and mechanical and chemical responsiveness of collagen proteins
取得平衡:绘制胶原蛋白的结构稳定性以及机械和化学反应性
- 批准号:
RGPIN-2020-04680 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Multi-Physics of Elastomer Aging: Macrostructure Mechanical Properties based on Morphological Chemical Degenerations
弹性体老化的多物理场:基于形态化学退化的宏观结构力学性能
- 批准号:
2309207 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Study on remineralized enamel in chemical identification, mechanical properties, and tooth wear prevention
再矿化牙釉质的化学鉴定、机械性能和预防牙齿磨损的研究
- 批准号:
22K10006 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Striking a balance: mapping the structural stability and mechanical and chemical responsiveness of collagen proteins
取得平衡:绘制胶原蛋白的结构稳定性以及机械和化学反应性
- 批准号:
RGPAS-2020-00057 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
CAREER: Realizing Alternative Cements with Chemical Kinetics: Tuned Mechanical–Chemical Properties of Cementitious Magnesium Silicate Hydrates by Multi-Scale Synthetic Control
职业:利用化学动力学实现替代水泥:通过多尺度合成控制调整胶凝硅酸镁水合物的机械和化学性能
- 批准号:
2143159 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Molecular mechanisms of mechanical and chemical corrosion on cement-bound materials
水泥粘结材料机械和化学腐蚀的分子机制
- 批准号:
467218859 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Heisenberg Grants
MRI: Acquisition of a Chemical Mechanical Polishing System for Research and Education
MRI:采购用于研究和教育的化学机械抛光系统
- 批准号:
2117605 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant














{{item.name}}会员




