GOALI/Collaborative Research: Additive Manufacturing of Mechanically Strong and Electrochemically Robust Porous Electrodes for Ultra-High Energy Density Batteries

GOALI/合作研究:用于超高能量密度电池的机械强度和电化学鲁棒性多孔电极的增材制造

基本信息

项目摘要

This Grant Opportunity for Academic Liaison with Industry (GOALI) award supports fundamental research to enable the realization of reliable and ultra-high energy density batteries by low cost manufacturing methods. Research results can help in making electric vehicles cost-competitive with gasoline powered vehicles, thereby reducing the greenhouse gas emissions. This will have a broad and lasting impact on the environment. The research will also benefit the Internet of Things, the healthcare, and the consumer electronics industry, because many applications need robust and high capacity batteries. In addition, this project will help train US workforce in the interdisciplinary areas of energy, advanced materials, and advanced manufacturing through the development of interdisciplinary curricula and various science activities for diverse youth. This research focuses on making 3D electrodes using an aerosol jet-based additive manufacturing method along with nanoparticle sintering. The first research objective is to establish relationships between process parameters and the quality of 3D electrode architecture produced by the processes. Process parameters of aerosol jet-based additive manufacturing include carrier gas pressure, and nanoparticle size and dispersion; and sintering process parameters include sintering energy and time. The quality of 3D electrode architecture will be measured in terms of porosity level, pore geometry, specific capacity, and resistance to capacity fade. This objective will be achieved by carrying out experimental research guided by theoretical models. The solidification of nanoparticle solutions upon dispense and the consecutive sintering process will be modelled by using a discretized particle model and a diffusive model. Further, a model that solves the Li diffusion equation coupled with stress evolution and the cracking in the porous electrode will be developed using a multi-scale modeling approach. These models will guide the additive fabrication experiments using high specific capacity materials such as silicon and silicon dioxide. The second objective is to identify relationships between the characteristics of an artificial coating on the electrode and the resistance to electrode capacity fade. The characteristics of the coating include the thickness and uniformity of the coated layer. To achieve this objective, atomic layer deposition will be used to create an electrode-electrolyte interface layer over the 3D porous electrodes. Several microscopic analyses such as atomic force microscopy, scanning electron microscopy, and transmission electron microscopy will be used to measure the coating thickness and uniformity. Battery electrochemical experiments will then be carried out and the resistance to capacity fade will be measured using cyclic voltammetry and impedance spectroscopy.
这项学术与工业联络资助机会(GOALI)奖支持通过低成本制造方法实现可靠和超高能量密度电池的基础研究。研究结果可以帮助电动汽车在成本上与汽油动力汽车竞争,从而减少温室气体排放。这将对环境产生广泛而持久的影响。这项研究也将有利于物联网、医疗保健和消费电子行业,因为许多应用都需要坚固的高容量电池。此外,该项目将通过为不同的青年开发跨学科课程和各种科学活动,帮助培训美国在能源、先进材料和先进制造等跨学科领域的劳动力。本研究的重点是利用基于气溶胶喷射的增材制造方法以及纳米颗粒烧结来制造3D电极。第一个研究目标是建立工艺参数与工艺产生的三维电极结构质量之间的关系。气溶胶射流增材制造的工艺参数包括载气压力、纳米颗粒尺寸和分散度;烧结工艺参数包括烧结能量和烧结时间。3D电极结构的质量将根据孔隙度水平、孔隙几何形状、比容量和抗容量衰减来测量。这一目标将通过在理论模型的指导下开展实验研究来实现。采用离散粒子模型和扩散模型来模拟纳米粒子溶液在分配和连续烧结过程中的凝固过程。在此基础上,利用多尺度建模方法建立了含应力演化和多孔电极裂纹的Li扩散方程求解模型。这些模型将指导使用高比容材料如硅和二氧化硅的增材制造实验。第二个目标是确定电极上人工涂层的特性与抗电极容量衰减之间的关系。涂层的特性包括涂层的厚度和均匀性。为了实现这一目标,原子层沉积将用于在三维多孔电极上创建电极-电解质界面层。将使用原子力显微镜、扫描电子显微镜和透射电子显微镜等几种显微分析来测量涂层的厚度和均匀性。然后将进行电池电化学实验,并使用循环伏安法和阻抗谱法测量对容量衰减的抵抗力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonghyun Park其他文献

A Tensor Voting for Corrupted Region Inference and Text Image Segmentation
用于损坏区域推理和文本图像分割的张量投票
  • DOI:
    10.1007/978-3-540-69423-6_73
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jonghyun Park;Jaemyeong Yoo;Gueesang Lee
  • 通讯作者:
    Gueesang Lee
Low Resistivity ITO Thin Films Deposited by NCD Technique at Low Temperature: Variation of Tin Concentration
NCD技术低温沉积低电阻率ITO薄膜:锡浓度的变化
  • DOI:
    10.1149/1.3467802
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Pammi;A. Chanda;Jun;Jonghyun Park;C. Cho;Won;Soon
  • 通讯作者:
    Soon
Interactivity of Neural Representations for Perceiving Shared Social Memory
感知共享社会记忆的神经表征的交互性
Recognition of Text in Wine Label Images
酒标图像中的文本识别
  • DOI:
    10.1109/ccpr.2009.5343972
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junsik Lim;Soohyung Kim;Jonghyun Park;Gueesang Lee;Hyungjeong Yang;Chilwoo Lee
  • 通讯作者:
    Chilwoo Lee
Microstructure-Controlled 3D Electrodes for Lithium-Ion Batteries
用于锂离子电池的微结构控制 3D 电极
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jie Li;Xinhua Liang;R. Panat;Jonghyun Park
  • 通讯作者:
    Jonghyun Park

Jonghyun Park的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonghyun Park', 18)}}的其他基金

EAGER: SARE: Security and Functionality of Energy Storage Devices from an External Electromagnetic Attack
EAGER:SARE:储能设备免受外部电磁攻击的安全性和功能
  • 批准号:
    2028992
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Multiscale Manufacturing for Advanced Energy Storage Devices
先进储能设备的多规模制造
  • 批准号:
    1917055
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Optimal Energy Scheduling in Microgrids with Photovoltaic (PV) Generation and Energy Storage Systems
具有光伏 (PV) 发电和储能系统的微电网中的最优能源调度
  • 批准号:
    1610396
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
UNS: Mechanical/Chemical Failure of Solid Electrolyte Interphase in Lithium-ion Batteries: Understanding Its Mechanisms and Suppressing Its Onset
UNS:锂离子电池中固体电解质界面的机械/化学失效:了解其机制并抑制其发生
  • 批准号:
    1510085
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
GOALI: Battery Health Dynamics and Its Management
目标:电池健康动态及其管理
  • 批准号:
    1538415
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
  • 批准号:
    2245117
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
  • 批准号:
    2129825
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
  • 批准号:
    2129776
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments
DMREF:合作研究:GOALI:加速极端环境中高熵硅酸盐的发现
  • 批准号:
    2219788
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Control-Oriented Modeling and Predictive Control of High Efficiency Low-emission Natural Gas Engines
GOALI/协作研究:高效低排放天然气发动机的面向控制的建模和预测控制
  • 批准号:
    2302217
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
  • 批准号:
    2147126
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
  • 批准号:
    2147122
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: ISS: GOALI: Transients and Instabilities in Flow Boiling and Condensation Under Microgravity
合作研究:ISS:GOALI:微重力下流动沸腾和冷凝的瞬态和不稳定性
  • 批准号:
    2126461
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research/GOALI: Fully Continuous Downstream Processing Enabled by Coupled Precipitation-Filtration Capture Operations
协作研究/GOALI:通过耦合沉淀-过滤捕获操作实现完全连续的下游处理
  • 批准号:
    2032261
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research & GOALI: Direct-Fed Ethanol Metal-Supported Solid Oxide Fuel Cells
合作研究
  • 批准号:
    2050691
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了