Geometry of Deformation and Moduli Spaces of Complex Manifolds
复流形的变形几何和模空间
基本信息
- 批准号:1510216
- 负责人:
- 金额:$ 42.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS 1510216, Principal Investigator: Kefeng LiuDeformation theory, moduli spaces and modular forms are fundamental to many subjects of mathematics and physics from geometry, topology, algebraic geometry, number theory to theoretical physics like string theory and cosmology. Many deep results in mathematics and string theory crucially rely on moduli spaces, which describe large families of geometric structures within a related geometric space, which is sometimes larger and less directly defined than the original geometry. A simple example is the collection of isometry classes of metric structures on a circle - these are determined by the circumference of the circle and so correspond to the open line of all positive real numbers; in this example a deformation would be an expansion or contraction of one circle to another of larger or smaller circumference. Understanding of deformations and moduli spaces of projective manifolds from global geometric point of view will reveal deep connections among geometry, algebra and physics, will have fundamental impacts in many research fields in mathematics and physics.The principal investigator will study the geometric and topological structures of the deformation theory, Teichmuller and moduli spaces of projective manifolds, and the modularity of certain generating series of the dimension of the tautological rings on the moduli spaces of Riemann surfaces. More precisely, the PI will study the following three important problems: (1) using the new formulas and iteration method discovered by the PI and collaborators to systemically study global deformation theory and prove deformation invariance of the dimension of pluricanonical sections of Kahler manifolds as conjectured by Siu by explicit geometric constructions; (2) proving a conjecture of Griffiths, which asserts the existence of simultaneous uniformization of all the periods for a family of projective manifolds; (3) exploring a striking relation discovered by the PI and Hao Xu between the Ramanujan mock theta-function and the dimensions of the tautological ring of moduli spaces of Riemann surfaces. In carrying out the projects the PI will train several young students and postdoctors to conduct research in these projects through collaboration, seminars, and lectures.
摘要奖:DMS 1510216,首席研究员:刘克峰变形理论、模空间和模形式是许多数学和物理学科的基础,从几何、拓扑、代数几何、数论到理论物理,如弦论和宇宙学。数学和弦论中的许多深层结果关键依赖于模空间,模空间描述了相关几何空间中的大族几何结构,有时比原始几何空间更大,更不直接定义。一个简单的例子是圆上的度量结构的等距类的集合-这些由圆的周长确定,因此对应于所有正实数的开线;在这个例子中,变形是一个圆到另一个圆周更大或更小的扩张或收缩。从整体几何的角度理解射影流形的形变和模空间,将揭示几何、代数和物理之间的深刻联系,将在数学和物理的许多研究领域产生根本性的影响。主要研究人员将研究射影流形的形变理论、TeichMuller空间和模空间的几何和拓扑结构,以及黎曼曲面的模空间上重言环的某些生成级数的模性。更确切地说,PI将研究以下三个重要问题:(1)利用PI和合作者发现的新的公式和迭代方法,系统地研究整体形变理论,并通过显式几何构造证明Siu猜想的Kahler流形的多正则截面的维度的形变不变性;(2)证明Griffiths的猜想,该猜想断言对于一族射影流形,所有周期的同时一致化的存在;(3)探索Pi和Hao Xu发现的Ramanujan模拟theta函数与Riemann曲面的模空间的重言环的维度之间的显著关系。在实施这些项目时,PI将培训几名年轻的学生和博士后,通过合作、研讨会和讲座进行这些项目的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kefeng Liu其他文献
Logarithmic vanishing theorems for effective q-ample divisors
有效 q 充足除数的对数消失定理
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Kefeng Liu;Xueyuan Wan;Xiaokui Yang - 通讯作者:
Xiaokui Yang
GROUP TOPOLOGIES ON AUTOMORPHISM GROUPS OF HOMOGENEOUS STRUCTURES
齐次结构自同构群的群拓扑
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Z. A. G. Hadernezhad;DE Javier;L. G. Onzalez;Matthias Aschenbrenner;Paul Balmer;Vyjayanthi Chari;Atsushi Ichino;Robert Lipshitz;Kefeng Liu;Dimitri Shlyakhtenko;Paul Yang;Ruixiang Zhang - 通讯作者:
Ruixiang Zhang
On orbifold elliptic genus
关于环褶椭圆属
- DOI:
10.1090/conm/310/05399 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
C. Dong;Kefeng Liu;X. Ma - 通讯作者:
X. Ma
A ug 2 00 4 A MATHEMATICAL THEORY OF THE TOPOLOGICAL VERTEX
A ug 2 00 4 拓扑顶点的数学理论
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Li Jun;Chiu;Kefeng Liu;Jian Zhou - 通讯作者:
Jian Zhou
Genome-Wide Comparative Analyses of Pigmentation Genes in Four Fish Species Provides Insights on Fish Skin Color Patterning
对四种鱼类色素沉着基因的全基因组比较分析为鱼类肤色模式提供了见解
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Lei Jia;Na Zhao;Xiaoxu He;K. Peng;Kefeng Liu;Bo Zhang - 通讯作者:
Bo Zhang
Kefeng Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kefeng Liu', 18)}}的其他基金
GEOMETRY AND TOPOLOGY OF THE MODULI SPACES OF RIEMANN SURFACES AND CALABI-YAU MANIFOLDS
黎曼曲面和卡拉比-丘流形模空间的几何和拓扑
- 批准号:
1007053 - 财政年份:2010
- 资助金额:
$ 42.6万 - 项目类别:
Continuing Grant
LOCALIZATION, STRING DUALITY AND MODULI SPACES
定域化、弦对偶性和模空间
- 批准号:
0705284 - 财政年份:2007
- 资助金额:
$ 42.6万 - 项目类别:
Continuing Grant
Mathematical Aspects of String Duality
弦对偶性的数学方面
- 批准号:
0405117 - 财政年份:2004
- 资助金额:
$ 42.6万 - 项目类别:
Standard Grant
Geometry and Topology of Counting Curves in Projective Manifolds
射影流形中计数曲线的几何和拓扑
- 批准号:
0196544 - 财政年份:2001
- 资助金额:
$ 42.6万 - 项目类别:
Standard Grant
Geometry and Topology of Counting Curves in Projective Manifolds
射影流形中计数曲线的几何和拓扑
- 批准号:
0072182 - 财政年份:2000
- 资助金额:
$ 42.6万 - 项目类别:
Standard Grant
Applications of Modular Invariance in Geometry and Topology
模不变性在几何和拓扑中的应用
- 批准号:
9803234 - 财政年份:1998
- 资助金额:
$ 42.6万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Leveraging Plastic Deformation Mechanisms Interactions in Metallic Materials to Access Extraordinary Fatigue Strength.
职业:利用金属材料中的塑性变形机制相互作用来获得非凡的疲劳强度。
- 批准号:
2338346 - 财政年份:2024
- 资助金额:
$ 42.6万 - 项目类别:
Continuing Grant
Does deformation lead to misinformation? How much can granitic rocks deform before accessory minerals are geochemically disturbed?
变形会导致错误信息吗?
- 批准号:
2342159 - 财政年份:2024
- 资助金额:
$ 42.6万 - 项目类别:
Standard Grant
Nuclear deformation and symmetry breaking from an ab-initio perspective
从头算角度看核变形和对称性破缺
- 批准号:
MR/Y034007/1 - 财政年份:2024
- 资助金额:
$ 42.6万 - 项目类别:
Fellowship
How does water move through the subducting slab? Slab-scale fluid pathways and deformation-fluid flow feedbacks at eclogite facies
水如何穿过俯冲板片?
- 批准号:
2317586 - 财政年份:2024
- 资助金额:
$ 42.6万 - 项目类别:
Standard Grant
Deformation of singularities through Hodge theory and derived categories
通过霍奇理论和派生范畴进行奇点变形
- 批准号:
DP240101934 - 财政年份:2024
- 资助金额:
$ 42.6万 - 项目类别:
Discovery Projects
4D Printed Origami Structures: Deformation Mechanisms and Mechanics
4D 打印折纸结构:变形机制和力学
- 批准号:
DP240103328 - 财政年份:2024
- 资助金额:
$ 42.6万 - 项目类别:
Discovery Projects
Postdoctoral Fellowship: EAR-PF: The effects of grain-scale deformation on helium diffusion and thermochronometric ages of accessory minerals
博士后奖学金:EAR-PF:晶粒尺度变形对氦扩散和副矿物热测年年龄的影响
- 批准号:
2305568 - 财政年份:2024
- 资助金额:
$ 42.6万 - 项目类别:
Fellowship Award
CAREER: Recycled Polymers of Enhanced Strength and Toughness: Predicting Failure and Unraveling Deformation to Enable Circular Transitions
职业:增强强度和韧性的再生聚合物:预测失效和解开变形以实现圆形过渡
- 批准号:
2338508 - 财政年份:2024
- 资助金额:
$ 42.6万 - 项目类别:
Standard Grant
Influence of Fracture Heterogeneity on Rock Deformation and Failure (INFORM): A Mechanics-based Multi-scale Framework for Radioactive Waste Disposal
裂缝非均质性对岩石变形和破坏的影响(INFORM):基于力学的放射性废物处置多尺度框架
- 批准号:
EP/W031221/2 - 财政年份:2024
- 资助金额:
$ 42.6万 - 项目类别:
Research Grant
Quantitative assessment of plastic deformation in cutting tools materials
切削刀具材料塑性变形的定量评估
- 批准号:
10060628 - 财政年份:2023
- 资助金额:
$ 42.6万 - 项目类别:
Collaborative R&D