RAPID: Rapid Prototyping and Manufacturing of Polyclonal Anti-Ebola Antibodies with Synthetic Biology and Microbioreactors

RAPID:利用合成生物学和微生物反应器快速原型设计和制造多克隆抗埃博拉抗体

基本信息

  • 批准号:
    1511431
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

1511431 Lu, Timothy Massachusetts Institute of Technology To counter the current Ebola outbreak one treatment option involves a cocktail of three antibodies called 'ZMapp', which has been shown to cure primates and has been reportedly used in the current outbreak to treat a small number of people. Despite the promise of ZMapp, its use has been highly restricted to just a few patients because of its severely limited availability. This low availability is because ZMapp production is currently carried out in plants, a slow process that is difficult to expand rapidly. Other anti-Ebola antibodies are similarly constrained by production systems that are challenging, time-consuming, and expensive to engineer and scale-up. Thus, there is a tremendous need for generalizable platforms that can be rapidly engineered to produce anti-infectious drugs and then easily scaled-up to create large numbers of doses. In this RAPID proposal yeast strains optimized for rapid production of anti-infectious antibodies will be adapted to express anti-Ebola antibodies. Yeast are promising hosts for manufacturing therapeutic molecules because they can be transported without refrigeration, quickly grown to large scales, and modified to make humanized therapies. It is anticipate that the engineered yeasts will be useful for economical and large-scale manufacturing of anti-Ebola therapies. In addition, this work will provide rapid-response capabilities for tackling future emerging diseases because the yeast platform can be quickly engineered with synthetic biology tools to generate new therapeutic agents. In addition, a distributed biomanufacturing approach will be applied by coupling engineered yeast with a novel micro-bioreactor technology that has the potential to mount rapid responses at the source of disease outbreaks.The goal of this RAPID proposal is to establish a rapid and flexible biomanufacturing platform in Pichia pastoris for the production of anti-Ebola neutralizing antibodies. ZMapp, a cocktail of 3 neutralizing monoclonal antibodies (mAbs), has been shown to rescue 100% of rhesus macaques when administered up to 5 days post-infection. Zmapp1 is currently produced in the plant Nicotiana benthamiana, a slow process that is difficult to scale. Current efforts to express neutralizing antibodies from other hosts, such as CHO cells, also require substantial time and expensive infrastructure to scale. Moreover, quick delivery and long-term storage of mAb therapies and Ebola vaccines will likely be difficult in the under-developed areas most susceptible to Ebola outbreaks. Finally, viral mutations may necessitate the rapid development of new therapeutic agents. Thus, a rapidly engineerable and deployable platform for the portable and scalable production of multiple anti-infectious therapies would be useful for addressing the current Ebola crisis as well as future infectious outbreaks. In this project P. pastoris strains will be designed to produce anti-Ebola mAbs. P. pastoris can be engineered with human glycosylation pathways, can be lyophilized, and is highly efficient at secreting biologics and mAbs, thus enabling industrial-scale production and simplifying purification. The group has already modified P. pastoris with synthetic-biology tools to achieve rapid and specific engineering of strains that manufacture biologic drugs. Distributed and portable production of anti-Ebola mAbs will be achieved by integrating engineered P. pastoris strains with portable micro-bioreactors. The technology also enables new therapeutic molecules to be rapidly generated and scaled-up for testing and deployment against evolving viruses and emerging infections using synthetic biology tools and a highly adaptable biomanufacturing platform.
1511431 Lu,Timothy马萨诸塞州理工学院为了应对目前的埃博拉疫情,一种治疗方案涉及一种名为“ZMapp”的三种抗体的混合物,该抗体已被证明可以治愈灵长类动物,据报道,在目前的疫情中,它被用于治疗少数人。尽管ZMapp有希望,但由于其可用性严重有限,它的使用一直高度限制在少数患者中。这种低可用性是因为ZMapp的生产目前是在工厂中进行的,这是一个缓慢的过程,难以快速扩展。其他抗埃博拉抗体也同样受到生产系统的限制,这些生产系统具有挑战性,耗时且工程和规模化成本高昂。因此,非常需要可推广的平台,可以快速工程化以生产抗感染药物,然后容易扩大规模以产生大量剂量。 在该RAPID提案中,为快速生产抗感染抗体而优化的酵母菌株将被改造以表达抗埃博拉抗体。酵母是制造治疗分子的有希望的宿主,因为它们可以在没有冷藏的情况下运输,快速生长到大规模,并被修改以制造人性化的疗法。预计工程酵母将可用于经济和大规模生产抗埃博拉疗法。此外,这项工作将为应对未来新出现的疾病提供快速反应能力,因为酵母平台可以快速利用合成生物学工具进行工程改造,以产生新的治疗药物。 此外,将采用分布式生物制造方法,将工程酵母与新型微生物反应器技术相结合,该技术有可能在疾病爆发的源头建立快速反应。该RAPID提案的目标是在巴斯德毕赤酵母中建立一个快速灵活的生物制造平台,用于生产抗埃博拉中和抗体。 ZMapp是3种中和单克隆抗体(mAb)的混合物,已显示在感染后5天内给药时可100%挽救恒河猴。Zmapp1目前在本塞姆氏烟草(Nicotiana benthamiana)中产生,这是一个缓慢的过程,难以规模化。目前从其他宿主(如CHO细胞)表达中和抗体的努力也需要大量时间和昂贵的基础设施来扩大规模。此外,在最易受埃博拉疫情影响的欠发达地区,mAb疗法和埃博拉疫苗的快速交付和长期储存可能很困难。最后,病毒突变可能需要快速开发新的治疗药物。因此,一个可快速工程化和可部署的平台,用于便携式和可扩展的多种抗感染疗法的生产,将有助于解决当前的埃博拉危机以及未来的传染病爆发。在该项目中,巴斯德毕赤酵母菌株将被设计用于生产抗埃博拉单克隆抗体。巴斯德毕赤酵母可以用人类糖基化途径进行工程改造,可以冻干,并且在分泌生物制剂和mAb方面非常有效,从而能够实现工业规模生产并简化纯化。该小组已经用合成生物学工具对巴斯德毕赤酵母进行了改造,以实现生产生物药物的菌株的快速和特异性工程。通过整合工程巴斯德毕赤酵母菌株和便携式微型生物反应器,将实现抗埃博拉单克隆抗体的分布式和便携式生产。该技术还使新的治疗分子能够快速生成和扩大规模,用于使用合成生物学工具和高度适应性的生物制造平台对不断演变的病毒和新出现的感染进行测试和部署。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy Lu其他文献

Tu1777 - REG3A is Induced in Response to IL-22 and Correlated with Peripheral IL-22 Levels in Subjects with Inflammatory Bowel Disease
  • DOI:
    10.1016/s0016-5085(17)33275-4
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Deepti Nagarkar;Brandon Harder;Monika Deswal;Luz Orozco;Nandhini Ramamoorthi;Kelly Loyet;Rich Erickson;William Faubion;Timothy Lu;Annemarie N. Lekkerkerker;Ma Somsouk;Mary Keir
  • 通讯作者:
    Mary Keir
Editorial Board: Biotechnology Journal 2/2024
编辑委员会:《生物技术杂志》2/2024
  • DOI:
    10.1002/biot.202470022
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    H. Alper;M. Antoniewicz;N. Borth;Marc Blondel;N. Budisa;Joaquim M. S. Cabral;Manuel Canovas;Giorgio Carta;Hyung Joon Cha;Jo;Matthew Wook Chang;George Guo;Chen;Wilfred Chen;Wen;Andre Choo;Don A. Cowan;M. DeLisa;Ruth Freitag;Jiaoqi Gao;Hikmet Geckil;R. Grabherr;K. Graumann;Phoenestra GmbH;Switzerland Kundl;Mohd Ali;Hassan;V. Hatzimanikatis;Mingtao Huang;Michael Jewett;J. Keasling;Ali Khademhosseini;Dong;Steffen Klamt;Mattheos Koffas;Ashok Kumar;G. Laible;Kong Peng;Lam;Gyun Min Lee;Luke P. Lee;Xiaokun Li;James Liao;Tiangang Liu;Timothy Lu;Bansi Malhotra;D. Mattanovich;T. Nagamune;Peter Neubauer;Jens B. Nielsen;Lars K. Nielsen;B. Nidetzky;Sean P. Palecek;Hyun Gyu Park;Je;Korea;Tai Hyun Park;Brian F. Pfleger;Nathan D. Price;Mikhail L. Rabinovich;Anurag S. Rathore;F. Riske;Anne Skaja Robinson;Cecilia Roque;A. Schmid;H. Steinkellner;Yongjin J. Zhou;H. Gassen;Dipti Dange;E. Stöger;N. Tavernarakis;J. Woodley;Xiaoxia Xia;Weiwen Zhang;A. Jungbauer;Sang Yup Lee
  • 通讯作者:
    Sang Yup Lee
Tu1861 A RANDOMIZED, OBSERVER-BLINDED PHASE IB MULTIPLE, ASCENDING DOSE STUDY OF UTTR1147A, AN IL-22FC FUSION PROTEIN, IN HEALTHY VOLUNTEERS AND ULCERATIVE COLITIS PATIENTS.
  • DOI:
    10.1016/s0016-5085(20)33648-9
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Frank D. Wagner;John Mansfield;Christian Geier;Ajit Dash;Yehong Wang;Chloe Li;Annemarie N. Lekkerkerker;Timothy Lu
  • 通讯作者:
    Timothy Lu

Timothy Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy Lu', 18)}}的其他基金

CAREER: Deciphering and Engineering Biological State Machines with Synthetic Biology
职业:用合成生物学破译和工程生物状态机
  • 批准号:
    1350625
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
NEB: Integrated Biological and Electronic Computation at the Nanoscale
NEB:纳米级生物和电子集成计算
  • 批准号:
    1124247
  • 财政年份:
    2011
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Rapid-PROTOtyping-compatible, soft-micro-mould-tooled MANufacturing process chain
兼容快速原型设计的软微模具制造工艺链
  • 批准号:
    EP/Z001005/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Fellowship
MASTER Scaffolds for Rapid, Single-Step Manufacture and Prototyping of CAR-T cells
用于快速、单步制造 CAR-T 细胞和原型制作的 MASTER 支架
  • 批准号:
    10713795
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Rapid prototyping of PIV-compatible vascular models using 3D printing
使用 3D 打印快速制作 PIV 兼容血管模型原型
  • 批准号:
    574426-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    University Undergraduate Student Research Awards
Novel structured materials and rapid prototyping techniques for research into advanced mux/demux modalities and enabling component manufacturing for the upcoming ultra-fast terahertz wireless communications
新型结构材料和快速原型技术,用于研究先进的复用/解复用模式,并为即将到来的超快太赫兹无线通信提供组件制造
  • 批准号:
    RGPIN-2019-04750
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
SaTC: TTP: Small: Experimental Platform for Rapid Prototyping and Deployment of Secure Multi-Party Protocols
SaTC:TTP:小型:安全多方协议快速原型设计和部署的实验平台
  • 批准号:
    2213057
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Rapid Prototyping Methods for Precision Glass Components
精密玻璃组件的快速原型制作方法
  • 批准号:
    RGPIN-2019-05698
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Rapid Prototyping of Novel Devices with In-situ Deposition, Imaging and Nanolithography
利用原位沉积、成像和纳米光刻技术快速制作新型器件原型
  • 批准号:
    EP/W006243/1
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Novel structured materials and rapid prototyping techniques for research into advanced mux/demux modalities and enabling component manufacturing for the upcoming ultra-fast terahertz wireless communications
新型结构材料和快速原型技术,用于研究先进的复用/解复用模式,并为即将到来的超快太赫兹无线通信提供组件制造
  • 批准号:
    RGPIN-2019-04750
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Novel structured materials and rapid prototyping techniques for research into advanced mux/demux modalities and enabling component manufacturing for the upcoming ultra-fast terahertz wireless communications
新型结构材料和快速原型技术,用于研究先进的复用/解复用模式,并为即将到来的超快太赫兹无线通信提供组件制造
  • 批准号:
    DGDND-2019-04750
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Rapid Prototyping Methods for Precision Glass Components
精密玻璃组件的快速原型制作方法
  • 批准号:
    RGPIN-2019-05698
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了