NEB: Integrated Biological and Electronic Computation at the Nanoscale

NEB:纳米级生物和电子集成计算

基本信息

  • 批准号:
    1124247
  • 负责人:
  • 金额:
    $ 165万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

This project is awarded under the Nanoelectronics for 2020 and Beyond competition, with support by multiple Directorates and Divisions at the National Science Foundation as well as by the Nanoelectronics Research Initiative of the Semiconductor Research Corporation. In the last decade, the scaling of electronics has slowed due to limitations in underlying technologies as nanoscale dimensions are approached, including leakage, power dissipation, lithography, interconnect, and noise. Thus, fundamentally new paradigms for efficient and high-performance computation are needed to enable important applications such as studying complex biological systems. The research objective of this proposal is to breakthrough the scaling limits of conventional electronics with a hybrid analog-digital computational platform that integrates heterogeneous biological and nanoelectronic systems. The hypothesis that will be explored is that heterogeneous integration of electronic computation and biological computation is desirable since the former contributes precision, programmability, and speed while the latter yields highly parallel and efficient processing. These systems will be implemented in bio-inspired subthreshold electronics and living cells using synthetic biology; they shall be integrated with each other via microfluidics and biological nanomaterials.This research has the potential to have broad impacts on a wide range of fields including computational science, synthetic biology, electrical engineering, nanomaterials research, infectious diseases, and biomedical science. Our experiments with novel forms of biological processing will enhance the breadth of computational platforms and provide insights into how biology achieves robust and efficient computation. Our biological circuits will advance the field of synthetic biology via new devices and architectures for engineering biological systems. By mimicking biological networks with subthreshold electronics, we can discover new high-performance electrical circuit designs. Our research into biologically synthesized and organized nanowires will inform our understanding of how biological systems are self-organized and shall enable new nanoelectronics, sustainable and environmentally friendly nanomaterial synthesis, and self-healing structures in the future. We will validate our computational platform on currently intractable problems in biomedical research, including modeling, simulating, and understanding how emergent properties, such as antibiotic resistance in bacteria and yeast, arise from large-scale networks. This computational platform will enable the unprecedented modeling of large-scale biological systems for hypothesis-driven biomedical research. This project also aims to advance education and outreach efforts in the highly interdisciplinary disciplines involved in this research. This project shall create a new course, "Molecular Circuits Engineering", to train undergraduates and graduates in both computational and experimental techniques for molecular computation. The team will also supervise students in the International Genetically Engineered Machines (iGEM) competition to provide hands-on experimental training. A key priority is to work with MIT and the MIT Center for Integrative Synthetic Biology to actively recruit under-represented minorities and women into computational, synthetic biology, and bio-inspired electronics research via the Saturday Engineering Enrichment and Discovery Academy, the MIT Summer Research Program, and the Society of Women Engineers.
该项目是在Nanoelectronics for 2020及以后的竞争中获得的,得到了国家科学基金会多个部门和部门以及半导体研究公司Nanoelectronics Research Initiative的支持。在过去的十年中,由于接近纳米尺度的基础技术的限制,电子器件的缩放已经放缓,包括泄漏、功耗、光刻、互连和噪声。因此,需要从根本上实现高效和高性能计算的新范例,以实现重要的应用,例如研究复杂的生物系统。该提案的研究目标是突破传统电子学的缩放限制,采用集成异构生物和纳米电子系统的混合模拟-数字计算平台。将要探索的假设是,电子计算和生物计算的异构集成是可取的,因为前者有助于精确度、可编程性和速度,而后者产生高度并行和高效的处理。这些系统将在生物激发的阈下电子器件和使用合成生物学的活细胞中实现,它们将通过微流体和生物纳米材料相互集成。这项研究有可能对计算科学、合成生物学、电气工程、纳米材料研究、传染病和生物医学科学等广泛领域产生广泛影响。我们对新型生物处理形式的实验将增强计算平台的广度,并为生物学如何实现强大而有效的计算提供见解。我们的生物电路将通过工程生物系统的新设备和架构推进合成生物学领域。通过用亚阈值电子学模拟生物网络,我们可以发现新的高性能电路设计。我们对生物合成和组织的纳米线的研究将告知我们对生物系统如何自组织的理解,并将在未来实现新的纳米电子学,可持续和环境友好的纳米材料合成以及自我修复结构。我们将验证我们的计算平台在生物医学研究中目前棘手的问题,包括建模,模拟,并了解如何紧急属性,如细菌和酵母的抗生素耐药性,从大规模网络中产生。该计算平台将为假设驱动的生物医学研究提供前所未有的大规模生物系统建模。 该项目还旨在推进本研究所涉及的高度跨学科的教育和推广工作。本计画将开设一门新课程“分子电路工程”,以训练本科生与研究生在分子计算的计算与实验技术。该团队还将指导学生参加国际遗传工程机器(iGEM)竞赛,提供动手实验培训。一个关键的优先事项是与麻省理工学院和麻省理工学院综合合成生物学中心合作,通过星期六工程丰富和发现学院,麻省理工学院夏季研究计划和女工程师协会,积极招募代表性不足的少数民族和妇女参与计算,合成生物学和生物启发的电子研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy Lu其他文献

Tu1777 - REG3A is Induced in Response to IL-22 and Correlated with Peripheral IL-22 Levels in Subjects with Inflammatory Bowel Disease
  • DOI:
    10.1016/s0016-5085(17)33275-4
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Deepti Nagarkar;Brandon Harder;Monika Deswal;Luz Orozco;Nandhini Ramamoorthi;Kelly Loyet;Rich Erickson;William Faubion;Timothy Lu;Annemarie N. Lekkerkerker;Ma Somsouk;Mary Keir
  • 通讯作者:
    Mary Keir
Editorial Board: Biotechnology Journal 2/2024
编辑委员会:《生物技术杂志》2/2024
  • DOI:
    10.1002/biot.202470022
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    H. Alper;M. Antoniewicz;N. Borth;Marc Blondel;N. Budisa;Joaquim M. S. Cabral;Manuel Canovas;Giorgio Carta;Hyung Joon Cha;Jo;Matthew Wook Chang;George Guo;Chen;Wilfred Chen;Wen;Andre Choo;Don A. Cowan;M. DeLisa;Ruth Freitag;Jiaoqi Gao;Hikmet Geckil;R. Grabherr;K. Graumann;Phoenestra GmbH;Switzerland Kundl;Mohd Ali;Hassan;V. Hatzimanikatis;Mingtao Huang;Michael Jewett;J. Keasling;Ali Khademhosseini;Dong;Steffen Klamt;Mattheos Koffas;Ashok Kumar;G. Laible;Kong Peng;Lam;Gyun Min Lee;Luke P. Lee;Xiaokun Li;James Liao;Tiangang Liu;Timothy Lu;Bansi Malhotra;D. Mattanovich;T. Nagamune;Peter Neubauer;Jens B. Nielsen;Lars K. Nielsen;B. Nidetzky;Sean P. Palecek;Hyun Gyu Park;Je;Korea;Tai Hyun Park;Brian F. Pfleger;Nathan D. Price;Mikhail L. Rabinovich;Anurag S. Rathore;F. Riske;Anne Skaja Robinson;Cecilia Roque;A. Schmid;H. Steinkellner;Yongjin J. Zhou;H. Gassen;Dipti Dange;E. Stöger;N. Tavernarakis;J. Woodley;Xiaoxia Xia;Weiwen Zhang;A. Jungbauer;Sang Yup Lee
  • 通讯作者:
    Sang Yup Lee
Tu1861 A RANDOMIZED, OBSERVER-BLINDED PHASE IB MULTIPLE, ASCENDING DOSE STUDY OF UTTR1147A, AN IL-22FC FUSION PROTEIN, IN HEALTHY VOLUNTEERS AND ULCERATIVE COLITIS PATIENTS.
  • DOI:
    10.1016/s0016-5085(20)33648-9
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Frank D. Wagner;John Mansfield;Christian Geier;Ajit Dash;Yehong Wang;Chloe Li;Annemarie N. Lekkerkerker;Timothy Lu
  • 通讯作者:
    Timothy Lu

Timothy Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy Lu', 18)}}的其他基金

RAPID: Rapid Prototyping and Manufacturing of Polyclonal Anti-Ebola Antibodies with Synthetic Biology and Microbioreactors
RAPID:利用合成生物学和微生物反应器快速原型设计和制造多克隆抗埃博拉抗体
  • 批准号:
    1511431
  • 财政年份:
    2015
  • 资助金额:
    $ 165万
  • 项目类别:
    Standard Grant
CAREER: Deciphering and Engineering Biological State Machines with Synthetic Biology
职业:用合成生物学破译和工程生物状态机
  • 批准号:
    1350625
  • 财政年份:
    2014
  • 资助金额:
    $ 165万
  • 项目类别:
    Continuing Grant

相似国自然基金

greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
焦虑症小鼠模型整合模式(Integrated) 行为和精细行为评价体系的构建
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Holographic Integrated Photonics Platform for the Optical Analysis of Biological Samples
用于生物样品光学分析的全息集成光子学平台
  • 批准号:
    EP/Y036182/1
  • 财政年份:
    2024
  • 资助金额:
    $ 165万
  • 项目类别:
    Research Grant
Integrated biological system design of catchment systems for non-point pollution control
面源污染控制集水系统综合生物系统设计
  • 批准号:
    2890110
  • 财政年份:
    2023
  • 资助金额:
    $ 165万
  • 项目类别:
    Studentship
Probabilistic deep learning models and integrated biological experiments for analyzing dynamic and heterogeneous microbiomes
用于分析动态和异质微生物组的概率深度学习模型和集成生物实验
  • 批准号:
    10622713
  • 财政年份:
    2023
  • 资助金额:
    $ 165万
  • 项目类别:
Integrated biological control of pest fungus gnats infesting shiitake mushrooms with native parasitoid wasps
用本地寄生蜂对侵染香菇的害虫真菌蚊进行综合生物防治
  • 批准号:
    23H02261
  • 财政年份:
    2023
  • 资助金额:
    $ 165万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research Infrastructure: An Integrated Laboratory Facility to Improve Research Capacity at Archbold Biological Station
研究基础设施:提高阿奇博尔德生物站研究能力的综合实验室设施
  • 批准号:
    2231736
  • 财政年份:
    2023
  • 资助金额:
    $ 165万
  • 项目类别:
    Standard Grant
Integrated model development of biological repair process against cell death
对抗细胞死亡的生物修复过程的集成模型开发
  • 批准号:
    23K07060
  • 财政年份:
    2023
  • 资助金额:
    $ 165万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Integrated Moment-Based Descriptors and Deep Neural Network for Screening Three-Dimensional Biological Data
合作研究:集成基于矩的描述符和深度神经网络用于筛选三维生物数据
  • 批准号:
    2151678
  • 财政年份:
    2022
  • 资助金额:
    $ 165万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Moment-Based Descriptors and Deep Neural Network for Screening Three-Dimensional Biological Data
合作研究:集成基于矩的描述符和深度神经网络用于筛选三维生物数据
  • 批准号:
    2151679
  • 财政年份:
    2022
  • 资助金额:
    $ 165万
  • 项目类别:
    Standard Grant
Development of a integrated dosimetry system to evaluate biological and physical radiation doses.
开发集成剂量测定系统来评估生物和物理辐射剂量。
  • 批准号:
    22K15872
  • 财政年份:
    2022
  • 资助金额:
    $ 165万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Harnessing knowledge of lifespan biological, health, environmental and psychosocial mechanisms of cognitive frailty for integrated interventions
利用认知脆弱的生命周期生物、健康、环境和心理社会机制知识进行综合干预
  • 批准号:
    BB/W018322/1
  • 财政年份:
    2022
  • 资助金额:
    $ 165万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了