Wave Propagation in Heterogeneous Nonlinear Dispersive Systems

异质非线性色散系统中的波传播

基本信息

  • 批准号:
    1511488
  • 负责人:
  • 金额:
    $ 33.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

This project is aimed at developing mathematical tools for the study of wave propagation in physical systems that are not spatially uniform, chiefly (a) surface water waves in a channel whose bottom topography varies periodically and (b) the passage of vibrations through a solid material whose composition varies either periodically or randomly. Problems of this kind arise, for example, in the design of materials for use in non-destructive testing and shock absorption. In the settings where the channel's bottom is flat or the solid is homogeneous, there are well-developed quantitative and qualitative theories which are both mathematically rigorous and are commonly used in applications. However, the presence of heterogeneity (due to the channel bottom topography or inclusions/defects in the material) leads to unexpected physical phenomena (for example, pulses that appear "jagged") that this research will help to elucidate and predict. The key mathematical tool for the investigation is to adapt the Korteweg-de Vries (KdV) approximation in a rigorous way so that it applies to heterogeneous problems. Doing so requires applying methods from elliptic homogenization theory to the study of nonlinear dispersive systems. This sort of approximation suggests that there are solutions to the heterogeneous systems which are, roughly speaking, solitary waves. However, a typical KdV approximation result is only valid on a time interval which, while long, is of finite duration. As such the question of whether or not the approximated system admits a genuine global in time counterpart to the solitary wave is left unresolved. The KdV approximation will serve as a point of departure for investigations into the very difficult question of the existence of "generalized traveling waves" for heterogeneous systems. In the presence of spatially periodic coefficients, classical traveling waves, which are static in a moving reference frame, are highly unlikely to exist. What one expects instead are shift-periodic solutions, i.e. solutions which, in an appropriate moving frame, are time periodic. An additional complication is the spatial heterogeneity that unexpectedly enters the problem as a singular perturbation. The main consequence of this is that the waves are not expected to converge to zero at spatial infinity but instead approach extremely small amplitude spatially periodic solutions. Such waves have infinite total energy, thus complicating the structure of long time asymptotics enormously. In particular this indicates that, while truly localized finite energy traveling waves may not exist, their metastable analogs may.
该项目旨在开发数学工具,用于研究空间不均匀的物理系统中的波传播,主要是(a)海底地形周期性变化的水道中的表面水波和(B)成分周期性或随机变化的固体材料中的振动通道。例如,在设计用于非破坏性测试和减震的材料时会出现这种问题。在通道底部平坦或固体均匀的情况下,有成熟的定量和定性理论,这些理论在数学上都是严格的,并且在应用中常用。然而,异质性的存在(由于通道底部地形或材料中的夹杂物/缺陷)会导致意想不到的物理现象(例如,出现“锯齿状”的脉冲),本研究将有助于阐明和预测。调查的关键数学工具是以严格的方式适应Korteweg-de弗里斯(KdV)近似,使其适用于异构问题。这样做需要应用椭圆均匀化理论的方法来研究非线性色散系统。这种近似表明,非均匀系统存在解,粗略地说,这些解是孤立波。然而,典型的KdV近似结果仅在时间间隔上有效,该时间间隔虽然长,但具有有限的持续时间。这样的问题是否近似系统承认一个真正的全球时间对应孤立波是悬而未决的。的KdV近似将作为一个出发点的调查非常困难的问题的存在“广义行波”的异质系统。在存在空间周期系数的情况下,在移动参考系中静止的经典行波极不可能存在。相反,人们期望的是移位周期解,即在适当的移动标架中是时间周期的解。另一个复杂的是空间异质性,意外地进入问题作为一个奇异扰动。这样做的主要后果是,波不会在空间无穷远处收敛到零,而是接近极小振幅的空间周期解。这样的波具有无穷大的总能量,从而极大地复杂化了长时间渐近性的结构。特别是,这表明,虽然真正本地化的有限能量行波可能不存在,它们的亚稳态类似物可能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jay Wright其他文献

GLC Analysis of the Trimethylsilyl Derivative of 2,4-Dihydroxy-3,3-dimethylbutyric Acid Υ-Lactone in Pantothenyl Alcohol
  • DOI:
    10.1002/jps.2600600144
  • 发表时间:
    1971-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    J.C. Stone;Jay Wright
  • 通讯作者:
    Jay Wright
Estradiol does not modulate FANCD2 in high risk ovarian surface epithelial cells
  • DOI:
    10.1016/j.ygyno.2014.07.068
  • 发表时间:
    2014-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Melissa Kellar;Jay Wright;Sharon Engel;Yukie Bean;Tanja Pejovic
  • 通讯作者:
    Tanja Pejovic
The effect of high-intensity aerobic interval training on postinfarction left ventricular remodelling
高强度有氧间歇训练对梗死后左心室重构的影响
  • DOI:
    10.1136/bcr-2012-007668
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    R. Godfrey;T. Theologou;S. Dellegrottaglie;S. Binukrishnan;Jay Wright;G. Whyte;G. Ellison
  • 通讯作者:
    G. Ellison
PO-04-162 ABSORBABLE ANTIBACTERIAL ENVELOPE PROMOTES DEVELOPMENT OF A HEALTHY CIED POCKET: PRIMARY RESULTS OF THE POCKET HEALTH STUDY
PO-04-162 可吸收抗菌包膜促进健康 CIED 囊袋的发育:囊袋健康研究的主要结果
  • DOI:
    10.1016/j.hrthm.2024.03.1193
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Francois Philippon;Elena Ladich;Renu Virmani;James E. Ip;Jay Wright;H. Andrew Hazlitt;Suneet Mittal;Mauro Biffi;Eric E. Johnson;Anna Jokinen;Jeff Lande;Aloke Finn;Chiara Baldovini;Christopher R. Ellis
  • 通讯作者:
    Christopher R. Ellis

Jay Wright的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jay Wright', 18)}}的其他基金

Singular and Spatially Heterogeneous Perturbations of Solitary Waves
孤立波的奇异和空间异质扰动
  • 批准号:
    2006172
  • 财政年份:
    2020
  • 资助金额:
    $ 33.97万
  • 项目类别:
    Standard Grant
Degenerate dispersive effects in partial and lattice differential equations
偏微分方程和晶格微分方程中的简并色散效应
  • 批准号:
    1105635
  • 财政年份:
    2011
  • 资助金额:
    $ 33.97万
  • 项目类别:
    Continuing Grant
Dynamics and interactions of free fluid interfaces
自由流体界面的动力学和相互作用
  • 批准号:
    0807738
  • 财政年份:
    2008
  • 资助金额:
    $ 33.97万
  • 项目类别:
    Standard Grant

相似海外基金

Research on the Fundamental Mechanism of Non-Uniform Gas Detonation Propagation: Interference between Shock Waves and Heterogeneous Free Jets
气体非均匀爆震传播的基本机制研究:冲击波与非均质自由射流的干涉
  • 批准号:
    23KK0083
  • 财政年份:
    2023
  • 资助金额:
    $ 33.97万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Analysis of crack propagation in heterogeneous rock masses under high temperature and high pressure conditions
高温高压条件下非均质岩体裂纹扩展分析
  • 批准号:
    21F21715
  • 财政年份:
    2021
  • 资助金额:
    $ 33.97万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Establishment of a novel method for estimation of equivalent elastic properties and strength of heterogeneous materials considering a multiscale uncertainties propagation
考虑多尺度不确定性传播的异质材料等效弹性性能和强度估计新方法的建立
  • 批准号:
    20H02035
  • 财政年份:
    2020
  • 资助金额:
    $ 33.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Modeling broadband seismic wave propagation within heterogeneous structures associated with seismogenic zone
模拟与地震带相关的异质结构内的宽带地震波传播
  • 批准号:
    17K14382
  • 财政年份:
    2017
  • 资助金额:
    $ 33.97万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Investigation of propagation mechanism of reaction-diffusion wave in heterogeneous media in vivo
体内异质介质中反应扩散波传播机制的研究
  • 批准号:
    15KT0104
  • 财政年份:
    2015
  • 资助金额:
    $ 33.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Laboratory experiments on fracture formation associated with slip propagation along a rock fault under heterogeneous stress
异质应力下沿岩石断层滑移传播相关裂缝形成的室内实验
  • 批准号:
    26870912
  • 财政年份:
    2014
  • 资助金额:
    $ 33.97万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Computational Algorithms for Imaging, Design and Inverse Problems of Particle Propagation in Heterogeneous Media
异质介质中粒子传播的成像、设计和反问题的计算算法
  • 批准号:
    1321018
  • 财政年份:
    2013
  • 资助金额:
    $ 33.97万
  • 项目类别:
    Standard Grant
Study on seismic wave propagation through the heterogeneous structure and the Green function retrieval from the noise cross correlation
地震波通过非均质结构传播及噪声互相关格林函数反演研究
  • 批准号:
    24540448
  • 财政年份:
    2012
  • 资助金额:
    $ 33.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Detonation propagation in gaseous, heterogeneous, and condensed phase systems
气态、非均相和凝聚相系统中的爆炸传播
  • 批准号:
    227636-2004
  • 财政年份:
    2008
  • 资助金额:
    $ 33.97万
  • 项目类别:
    Discovery Grants Program - Individual
Detonation propagation in gaseous, heterogeneous, and condensed phase systems
气态、非均相和凝聚相系统中的爆炸传播
  • 批准号:
    227636-2004
  • 财政年份:
    2007
  • 资助金额:
    $ 33.97万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了