Degenerate dispersive effects in partial and lattice differential equations

偏微分方程和晶格微分方程中的简并色散效应

基本信息

  • 批准号:
    1105635
  • 负责人:
  • 金额:
    $ 20.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

A spatially extended system is said to be dispersive when the speed of propagation of a wave depends upon that wave's frequency. Linear dispersive effects play a fundamental role in the study of a large number of physical scenarios and there has been an explosion of results concerning semi-linear dispersive equations. Nevertheless there are situations in which the speed of propagation of a wave depends on the wave's frequency as well as its amplitude. That is to say the mechanism which generates dispersion is nonlinear. It is the purpose of this project to develop mathematically rigorous theory for such equations when the nonlinear dispersive effects are degenerate (i.e., they vanish very rapidly as the amplitude tends to zero). The degeneracy of the equations allows for the existence of classical solutions which are not smooth and there is substantial numerical and formal evidence that cases arise in which degenerate dispersion leads to catastrophic instability akin to that of a backwards heat equation. Consequently, one of the principal goals of the project is to develop the existence theory for degenerate dispersive partial differential equations.Degenerate dispersive equations arise as models for the dynamics of chains and lattices of hard spheres. Experimental results demonstrate that such chains exhibit tightly focused pulses which are easily generated and highly tunable. These narrow pulses are expected to find uses in non-destructive testing, shock absorption, remote sensing and medical imaging. At this time, there is no theoretically rigorous explanation for the stability and robust nature of these pulses. Though there are results concerning similar physical problems where the dispersive effects are not degenerate, they rely strongly on the fact that slow moving pulses are very wide and very small in amplitude. In the case of hard spheres, the interesting pulse solutions have a fixed width, independent of speed and amplitude and it is not obvious how to extend the known results to this case. A primary goal of the project is developing mathematical tools for the study of the stability and robustness of such pulses. The inclusion and training of graduate and undergraduate students is an integral part of this project. Among other projects, undergraduate students will be involved into investigation of an important application, models for traffic flow.
当波的传播速度取决于该波的频率时,空间扩展的系统被称为色散的。线性色散效应在大量物理场景的研究中起着基础性的作用,并且关于半线性色散方程的结果已经出现了爆炸式的增长。 然而,在某些情况下,波的传播速度取决于波的频率和振幅。 也就是说,产生色散的机制是非线性的。 本项目的目的是在非线性色散效应退化(即,当振幅趋于零时,它们非常迅速地消失)。方程的退化允许经典的解决方案,这是不光滑的存在,有大量的数值和正式的证据表明,出现的情况下,退化的色散导致灾难性的不稳定类似于向后热方程。 因此,该项目的主要目标之一是发展退化色散偏微分方程的存在性理论。退化色散方程作为硬球链和晶格动力学的模型出现。 实验结果表明,这种链表现出紧密聚焦的脉冲,这是很容易产生和高度可调。这些窄脉冲有望用于无损检测、减震、遥感和医学成像。 在这个时候,没有理论上严格的解释这些脉冲的稳定性和鲁棒性。虽然也有关于类似的物理问题的色散效应不退化的结果,他们强烈依赖于这样一个事实,即缓慢移动的脉冲是非常广泛的,非常小的振幅。 在硬球的情况下,有趣的脉冲解具有固定的宽度,与速度和幅度无关,并且如何将已知的结果扩展到这种情况并不明显。 该项目的主要目标是开发数学工具,用于研究这种脉冲的稳定性和鲁棒性。对研究生和本科生的包容和培训是该项目的一个组成部分。在其他项目中,本科生将参与调查一个重要的应用,交通流模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jay Wright其他文献

GLC Analysis of the Trimethylsilyl Derivative of 2,4-Dihydroxy-3,3-dimethylbutyric Acid Υ-Lactone in Pantothenyl Alcohol
  • DOI:
    10.1002/jps.2600600144
  • 发表时间:
    1971-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    J.C. Stone;Jay Wright
  • 通讯作者:
    Jay Wright
Estradiol does not modulate FANCD2 in high risk ovarian surface epithelial cells
  • DOI:
    10.1016/j.ygyno.2014.07.068
  • 发表时间:
    2014-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Melissa Kellar;Jay Wright;Sharon Engel;Yukie Bean;Tanja Pejovic
  • 通讯作者:
    Tanja Pejovic
The effect of high-intensity aerobic interval training on postinfarction left ventricular remodelling
高强度有氧间歇训练对梗死后左心室重构的影响
  • DOI:
    10.1136/bcr-2012-007668
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    R. Godfrey;T. Theologou;S. Dellegrottaglie;S. Binukrishnan;Jay Wright;G. Whyte;G. Ellison
  • 通讯作者:
    G. Ellison
PO-04-162 ABSORBABLE ANTIBACTERIAL ENVELOPE PROMOTES DEVELOPMENT OF A HEALTHY CIED POCKET: PRIMARY RESULTS OF THE POCKET HEALTH STUDY
PO-04-162 可吸收抗菌包膜促进健康 CIED 囊袋的发育:囊袋健康研究的主要结果
  • DOI:
    10.1016/j.hrthm.2024.03.1193
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Francois Philippon;Elena Ladich;Renu Virmani;James E. Ip;Jay Wright;H. Andrew Hazlitt;Suneet Mittal;Mauro Biffi;Eric E. Johnson;Anna Jokinen;Jeff Lande;Aloke Finn;Chiara Baldovini;Christopher R. Ellis
  • 通讯作者:
    Christopher R. Ellis

Jay Wright的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jay Wright', 18)}}的其他基金

Singular and Spatially Heterogeneous Perturbations of Solitary Waves
孤立波的奇异和空间异质扰动
  • 批准号:
    2006172
  • 财政年份:
    2020
  • 资助金额:
    $ 20.28万
  • 项目类别:
    Standard Grant
Wave Propagation in Heterogeneous Nonlinear Dispersive Systems
异质非线性色散系统中的波传播
  • 批准号:
    1511488
  • 财政年份:
    2015
  • 资助金额:
    $ 20.28万
  • 项目类别:
    Continuing Grant
Dynamics and interactions of free fluid interfaces
自由流体界面的动力学和相互作用
  • 批准号:
    0807738
  • 财政年份:
    2008
  • 资助金额:
    $ 20.28万
  • 项目类别:
    Standard Grant

相似国自然基金

红树对重金属的定位累积及耦合微观分析与耐受策略研究
  • 批准号:
    30970527
  • 批准年份:
    2009
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

Well-posedness and Long-time Behavior of Dispersive Integrable Systems
色散可积系统的适定性和长期行为
  • 批准号:
    2348018
  • 财政年份:
    2024
  • 资助金额:
    $ 20.28万
  • 项目类别:
    Continuing Grant
Low Regularity and Long Time Dynamics in Nonlinear Dispersive Flows
非线性弥散流中的低规律性和长时间动态
  • 批准号:
    2348908
  • 财政年份:
    2024
  • 资助金额:
    $ 20.28万
  • 项目类别:
    Standard Grant
Conference: Emergent Phenomena in Nonlinear Dispersive Waves
会议:非线性色散波中的涌现现象
  • 批准号:
    2339212
  • 财政年份:
    2024
  • 资助金额:
    $ 20.28万
  • 项目类别:
    Standard Grant
Large time behavior of solutions to nonlinear hyperbolic and dispersive equations with weakly dissipative structure
弱耗散结构非线性双曲和色散方程解的大时间行为
  • 批准号:
    22KJ2801
  • 财政年份:
    2023
  • 资助金额:
    $ 20.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Analysis of Regular and Random Soliton Gases in Integrable Dispersive Partial Differential Equations.
可积色散偏微分方程中规则和随机孤子气体的分析。
  • 批准号:
    2307142
  • 财政年份:
    2023
  • 资助金额:
    $ 20.28万
  • 项目类别:
    Standard Grant
Random dispersive and wave equations
随机色散方程和波动方程
  • 批准号:
    2883083
  • 财政年份:
    2023
  • 资助金额:
    $ 20.28万
  • 项目类别:
    Studentship
Conference: Recent Developments and Future Directions in Nonlinear Dispersive and Wave Equations
会议:非线性色散和波动方程的最新进展和未来方向
  • 批准号:
    2328459
  • 财政年份:
    2023
  • 资助金额:
    $ 20.28万
  • 项目类别:
    Standard Grant
Multi-soliton Dynamics for Dispersive Partial Differential Equations
色散偏微分方程的多孤子动力学
  • 批准号:
    2247290
  • 财政年份:
    2023
  • 资助金额:
    $ 20.28万
  • 项目类别:
    Standard Grant
On the Long Time Behavior of Nonlinear Dispersive Equations
非线性色散方程的长期行为
  • 批准号:
    2306429
  • 财政年份:
    2023
  • 资助金额:
    $ 20.28万
  • 项目类别:
    Standard Grant
Probabilistic Aspects of Dispersive and Wave Equations
色散方程和波动方程的概率方面
  • 批准号:
    2246908
  • 财政年份:
    2023
  • 资助金额:
    $ 20.28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了