Model Uncertainty and Optimal Transport
模型不确定性和最优传输
基本信息
- 批准号:1512900
- 负责人:
- 金额:$ 20.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The problem of model uncertainty has recently received widespread attention in financial mathematics. On the application side, this is due to the recent financial crisis where overconfidence in models played an important role. On the mathematical side, the reason is that an abundance of interesting connections to other areas have emerged; in particular, optimal transport, stochastic analysis, nonlinear partial differential equations, Skorokhod embeddings, nonlinear expectations, decision theory, and quasi-sure analysis. In this project, the investigator studies how model uncertainty influences the fundamental tasks of pricing, hedging and investment in financial markets. Students are included in the work of the project. The first part of this project is concerned with the pricing and hedging of financial derivatives under model uncertainty. If both the underlying security and liquid options are used as hedging instruments, the superreplication principle yields sharp and robust bounds for derivatives prices that are consistent with the market data, without making excessively strong assumptions about model dynamics. Moreover, this approach yields a robust hedging strategy to manage the associated risk. In a mild idealization where a continuum of call options can be traded, superreplication is intimately linked to a Monge-Kantorovich optimal transport problem, namely, a transport between the marginal laws of the security. The no-arbitrage principle of finance imposes a probabilistic structure on this transport, which leads to the so-called martingale optimal transport problem that is studied vigorously in this project. The investigation leads to the computation of worst-case scenarios and hedging strategies, and is also of great interest to probability theory and analysis. A second part of the project is dedicated to understanding the impact of model uncertainty on the optimal portfolio choice for an investor such as a retirement fund. A third part, again related to the pricing of derivatives, studies a problem of financial engineering: How does one algorithmically construct market models that are consistent with quoted option prices as observed in financial markets? More precisely, the project shows how to build a risk-neutral model that is calibrated to a given set of liquidly traded instruments, not necessarily of plain vanilla type. Students are included in the work of the project.
最近,模型不确定性问题在金融数学中受到了广泛的关注。在应用方面,这是由于最近的金融危机,对模型的过度自信发挥了重要作用。在数学方面,原因是出现了大量与其他领域的有趣联系;特别是最优运输、随机分析、非线性偏微分方程、Skorokhod嵌入、非线性期望、决策理论和拟确定性分析。在这个项目中,研究人员研究了模型不确定性如何影响金融市场定价、对冲和投资的基本任务。学生被包括在这个项目的工作中。本课题的第一部分是关于模型不确定性下金融衍生品的定价和套期保值问题。如果标的证券和流动性期权都被用作对冲工具,超级复制原理将为衍生品价格产生与市场数据一致的尖锐而稳健的边界,而不会对模型动态做出过强的假设。此外,这种方法产生了一种稳健的对冲策略来管理相关风险。在一种温和的理想化中,可以交易一系列看涨期权,超复制与Monge-Kantorovich最优运输问题密切相关,即证券边际定律之间的运输。金融学中的无套利原理将概率结构强加于这种运输方式,这就导致了所谓的最优运输问题,也就是这一课题中重点研究的问题。这项研究导致了最坏情况的计算和套期保值策略,也是概率论和分析的重要内容。该项目的第二部分致力于了解模型不确定性对退休基金等投资者的最优投资组合选择的影响。第三部分同样与衍生品定价有关,研究金融工程的一个问题:如何通过算法构建与金融市场中观察到的期权报价一致的市场模型?更准确地说,该项目展示了如何构建一个风险中性模型,该模型针对一套给定的流动性交易工具进行校准,不一定是普通的香草型工具。学生被包括在这个项目的工作中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marcel Nutz其他文献
Random G-expectations.
- DOI:
10.1214/12-aap885 - 发表时间:
2010-09 - 期刊:
- 影响因子:1.8
- 作者:
Marcel Nutz - 通讯作者:
Marcel Nutz
Robust Superhedging with Jumps and Diffusion
- DOI:
10.1016/j.spa.2015.07.008 - 发表时间:
2014-07 - 期刊:
- 影响因子:0
- 作者:
Marcel Nutz - 通讯作者:
Marcel Nutz
UTILITY MAXIMIZATION UNDER MODEL UNCERTAINTY IN DISCRETE TIME
- DOI:
10.1111/mafi.12068 - 发表时间:
2013-07 - 期刊:
- 影响因子:1.6
- 作者:
Marcel Nutz - 通讯作者:
Marcel Nutz
Quadratically Regularized Optimal Transport: Existence and Multiplicity of Potentials
二次正则化最优传输:势的存在性和多重性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Marcel Nutz - 通讯作者:
Marcel Nutz
Marcel Nutz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marcel Nutz', 18)}}的其他基金
Entropy in Optimal Transport and Finance
最优运输和金融中的熵
- 批准号:
2106056 - 财政年份:2021
- 资助金额:
$ 20.85万 - 项目类别:
Standard Grant
Risk Assessment and Decision Making Under Uncertainty with Applications
不确定性下的风险评估和决策及其应用
- 批准号:
1812661 - 财政年份:2018
- 资助金额:
$ 20.85万 - 项目类别:
Standard Grant
Stochastic Control under Model Uncertainty
模型不确定性下的随机控制
- 批准号:
1208985 - 财政年份:2012
- 资助金额:
$ 20.85万 - 项目类别:
Standard Grant
相似海外基金
Optimal Design of Renewable Energy Supply Chains Under Uncertainty
不确定性下的可再生能源供应链优化设计
- 批准号:
RGPIN-2020-05866 - 财政年份:2022
- 资助金额:
$ 20.85万 - 项目类别:
Discovery Grants Program - Individual
Optimal estimation and uncertainty quantification for velocimetry-based pressure field reconstruction
基于测速的压力场重建的最优估计和不确定性量化
- 批准号:
RGPIN-2020-04486 - 财政年份:2022
- 资助金额:
$ 20.85万 - 项目类别:
Discovery Grants Program - Individual
Optimal management strategy for short food supply chains considering heterogeneity and uncertainty
考虑异质性和不确定性的短食品供应链优化管理策略
- 批准号:
22K04607 - 财政年份:2022
- 资助金额:
$ 20.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optimal design, scheduling and control of chemical processes and emerging energy systems for sustainable and flexible operations under uncertainty
化学过程和新兴能源系统的优化设计、调度和控制,以实现不确定性下的可持续和灵活运行
- 批准号:
RGPIN-2018-03812 - 财政年份:2022
- 资助金额:
$ 20.85万 - 项目类别:
Discovery Grants Program - Individual
Aerospace product development value streams design and planning for sustainable performance improvement and optimal value under uncertainty
航空航天产品开发价值流设计和规划,以实现不确定性下的可持续绩效改进和最佳价值
- 批准号:
RGPIN-2015-06253 - 财政年份:2021
- 资助金额:
$ 20.85万 - 项目类别:
Discovery Grants Program - Individual
Optimal design, scheduling and control of chemical processes and emerging energy systems for sustainable and flexible operations under uncertainty
化学过程和新兴能源系统的优化设计、调度和控制,以实现不确定性下的可持续和灵活运行
- 批准号:
RGPIN-2018-03812 - 财政年份:2021
- 资助金额:
$ 20.85万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Optimal Control of Unmanned Aerial Vehicles Against Cyber Attacks in the Presence of Uncertainty
存在不确定性的情况下无人机抵御网络攻击的随机最优控制
- 批准号:
21K14351 - 财政年份:2021
- 资助金额:
$ 20.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Optimal estimation and uncertainty quantification for velocimetry-based pressure field reconstruction
基于测速的压力场重建的最优估计和不确定性量化
- 批准号:
RGPIN-2020-04486 - 财政年份:2021
- 资助金额:
$ 20.85万 - 项目类别:
Discovery Grants Program - Individual
Optimal Design of Renewable Energy Supply Chains Under Uncertainty
不确定性下的可再生能源供应链优化设计
- 批准号:
RGPIN-2020-05866 - 财政年份:2021
- 资助金额:
$ 20.85万 - 项目类别:
Discovery Grants Program - Individual
Optimal design, scheduling and control of chemical processes and emerging energy systems for sustainable and flexible operations under uncertainty
化学过程和新兴能源系统的优化设计、调度和控制,以实现不确定性下的可持续和灵活运行
- 批准号:
RGPIN-2018-03812 - 财政年份:2020
- 资助金额:
$ 20.85万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




