Bayesian Inference for Peaks Over Threshold Models for Multivariate and Spatial Extremes

多元和空间极值的阈值模型峰值的贝叶斯推理

基本信息

  • 批准号:
    1513076
  • 负责人:
  • 金额:
    $ 30.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-15 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

Extreme value theory is a branch of probability and statistics that focuses on the study of rare events. There are many areas of science and technology where such methods find applications. Examples include the quantification of actuarial risk, estimation of large fluctuations in financial markets, and the estimation of maximum water flow. Of particular relevance for our society is the study of extreme climate events. Historical records of climate related variables provide evidence that there is an intensification of extreme weather. Climate projections indicate that the frequency and intensity of events with catastrophic potential will increase even further. This research focuses on the development of statistical methods that will enable careful assessment of the uncertainties related to extreme events. The proposed methods will focus on models that look jointly at several variables and apply to observations collected in large spatial domains. Probabilistic assessment of the uncertainties in the occurrence of rare events will be made possible by a Bayesian approach. This will provide a powerful tool for rational decision and policy making.In this project, novel methodology for the statistical analysis of the distributions of extreme values is proposed. The methods are based on using the amounts in excess of a fixed threshold for the variables of interest, or peaks over thresholds (POT). POT methods to perform Bayesian inference for (a) multivariate observations, (b) spatially indexed fields, and (c) fields of multivariate observations in space will be developed and implemented. In extreme value theory, the focus is on extrapolation as scarce extreme observations are used to describe the behavior of the tails of the distribution. The theory and the methods for inference on univariate extreme values are firmly established and fully developed. For multivariate problems, it is key to model the joint tail dependence of the different variables. In this sense, the theory is well understood, but inferential methods are not as straightforward as in the univariate case. This is especially true for POT methods. A further level of complication is introduced when dealing with georeferenced data. In fact, in the spatial setting, it is impossible to write the full likelihood of realistic POT models for observations collected at an arbitrary number of locations. This research focuses on the development of methods that (a) are conceptually clear to specify using a simple factorization that is at the core of Bayesian hierarchical models, (b) allow for fully integrated Bayesian inference that accounts for all estimation uncertainty and quantifies it probabilistically, (c) have theoretically sound asymptotic properties, (d) provide flexible characterizations of a wide range of tail dependence, and (e) are computationally feasible for large spatial domains.
极值理论是概率论和统计学的一个分支,主要研究罕见事件。这种方法在许多科学和技术领域都有应用。 例如,精算风险的量化、金融市场大幅波动的估计以及最大水流量的估计。 与我们社会特别相关的是对极端气候事件的研究。气候相关变量的历史记录提供了极端天气加剧的证据。 气候预测表明,具有灾难性潜力的事件的频率和强度将进一步增加。 这项研究的重点是制定统计方法,以便能够仔细评估与极端事件有关的不确定性。所提出的方法将侧重于共同研究几个变量的模型,并适用于在大空间域中收集的观测数据。将通过贝叶斯方法对罕见事件发生的不确定性进行概率评估。 本计画提出一种新的极值分布统计分析方法。该方法基于使用超过感兴趣的变量的固定阈值的量,或超过阈值的峰值(POT)。 POT方法进行贝叶斯推断(a)多元观测,(B)空间索引字段,(c)领域的多元观测空间将开发和实施。 在极值理论中,重点是外推,因为很少的极端观测值被用来描述分布尾部的行为。一元极值推理的理论和方法得到了牢固的建立和充分的发展。对于多变量问题,关键是对不同变量的联合尾部依赖进行建模。在这个意义上,理论是很好理解的,但推理方法不像在单变量的情况下那么简单。这对于POT方法来说尤其如此。 在处理地理参考数据时,会出现更复杂的情况。事实上,在空间环境中,不可能为在任意数量的位置收集的观测值编写真实POT模型的全部可能性。这项研究的重点是开发的方法,(a)是概念上明确指定使用一个简单的因子分解,这是在贝叶斯分层模型的核心,(B)允许完全集成的贝叶斯推理,占所有估计的不确定性和量化它的概率,(c)有理论上健全的渐近性质,(d)提供灵活的表征范围广泛的尾部依赖,和(e)对于大的空间域在计算上是可行的。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast inference for time-varying quantiles via flexible dynamic models with application to the characterization of atmospheric rivers
通过灵活的动态模型快速推断时变分位数并应用于大气河流的表征
  • DOI:
    10.1214/21-aoas1497
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Barata, Raquel;Prado, Raquel;Sansó, Bruno
  • 通讯作者:
    Sansó, Bruno
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bruno Sanso其他文献

Bruno Sanso的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bruno Sanso', 18)}}的其他基金

Multi-Scale Models for Non-Stationary Spatial Datasets
非平稳空间数据集的多尺度模型
  • 批准号:
    2050012
  • 财政年份:
    2021
  • 资助金额:
    $ 30.93万
  • 项目类别:
    Standard Grant
Collaborative Research: Flexible Statistical Models to Blend Massive Geostationary-Derived Climate Data Records
合作研究:灵活的统计模型来融合大量对地静止轨道衍生的气候数据记录
  • 批准号:
    1953168
  • 财政年份:
    2020
  • 资助金额:
    $ 30.93万
  • 项目类别:
    Standard Grant
Travel Support for the 12th ISBA World Meeting on Bayesian Statistics
第十二届 ISBA 贝叶斯统计世界会议的差旅支持
  • 批准号:
    1401118
  • 财政年份:
    2014
  • 资助金额:
    $ 30.93万
  • 项目类别:
    Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Model Uncertainty and Multiplicity
CBMS 数学科学区域会议 - 模型不确定性和多重性
  • 批准号:
    1137825
  • 财政年份:
    2012
  • 资助金额:
    $ 30.93万
  • 项目类别:
    Standard Grant
Space and Space-Time Models for Large Datasets
大型数据集的空间和时空模型
  • 批准号:
    0906765
  • 财政年份:
    2009
  • 资助金额:
    $ 30.93万
  • 项目类别:
    Standard Grant
SGER: Evaluation of Community Climate System Model (CCSM) Constituent Transport Variability
SGER:社区气候系统模型 (CCSM) 成分传输变异性的评估
  • 批准号:
    0405451
  • 财政年份:
    2004
  • 资助金额:
    $ 30.93万
  • 项目类别:
    Standard Grant
CMG: Improved Bayesian Estimators for Uncertainty in Climate System Properties
CMG:气候系统特性不确定性的改进贝叶斯估计
  • 批准号:
    0417753
  • 财政年份:
    2004
  • 资助金额:
    $ 30.93万
  • 项目类别:
    Standard Grant

相似海外基金

Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
  • 批准号:
    EP/Y002113/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.93万
  • 项目类别:
    Research Grant
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
  • 批准号:
    2336840
  • 财政年份:
    2024
  • 资助金额:
    $ 30.93万
  • 项目类别:
    Continuing Grant
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
  • 批准号:
    2339829
  • 财政年份:
    2024
  • 资助金额:
    $ 30.93万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 30.93万
  • 项目类别:
    Standard Grant
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
  • 批准号:
    EP/Y000862/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.93万
  • 项目类别:
    Research Grant
CAREER: Efficient Large Language Model Inference Through Codesign: Adaptable Software Partitioning and FPGA-based Distributed Hardware
职业:通过协同设计进行高效的大型语言模型推理:适应性软件分区和基于 FPGA 的分布式硬件
  • 批准号:
    2339084
  • 财政年份:
    2024
  • 资助金额:
    $ 30.93万
  • 项目类别:
    Continuing Grant
Designing Interaction Freedom via Active Inference
通过主动推理设计交互自由度
  • 批准号:
    EP/Y029178/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.93万
  • 项目类别:
    Research Grant
AI4PhotMod - Artificial Intelligence for parameter inference in Photosynthesis Models
AI4PhotMod - 用于光合作用模型中参数推断的人工智能
  • 批准号:
    BB/Y51388X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.93万
  • 项目类别:
    Research Grant
STATISTICAL AND COMPUTATIONAL THRESHOLDS IN SPIN GLASSES AND GRAPH INFERENCE PROBLEMS
自旋玻璃和图推理问题的统计和计算阈值
  • 批准号:
    2347177
  • 财政年份:
    2024
  • 资助金额:
    $ 30.93万
  • 项目类别:
    Standard Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 30.93万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了