Multi-Scale Models for Non-Stationary Spatial Datasets

非平稳空间数据集的多尺度模型

基本信息

  • 批准号:
    2050012
  • 负责人:
  • 金额:
    $ 28.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

This research project will develop statistical methods for spatial data using a model-based approach. The wide availability of location-referenced observations has resulted in a need to analyze and make predictions for very large collections of spatial data. Current models for spatial data have difficulties handling very large numbers of observations irregularly scattered in space. This project will develop methods for large datasets that contain surfaces with little variability in some parts of the region under study, but high variability in other parts of the region. The statistical methods to be developed will be applicable to the scientific disciplines that use large spatial datasets, including the quantitative environmental sciences, spatial econometrics, and statistical climatology. In particular, the project will have an impact on the study of essential climate variables that are observed from satellites, such as precipitation, snow cover, and wildfires. The project also will provide an educational and training experience for graduate students. Publicly available software will be developed.This research project will develop model-based geostatistical methods for non-stationary spatial fields, featuring a multi-resolution structure that is able to capture the variability at different spatial scales. The ability of the model to handle non-stationarity is enhanced by the fact that the resolution changes in space. To achieve scalability to large datasets, the model to be developed will induce sparseness by using compactly supported kernels, coupled with carefully defined prior distributions that introduce strong regularization for the multi-resolution coefficients. In addition, the model fitting approach developed in this research will avoid costly trans-dimensional Monte Carlo sampling by casting the problem as one of variable selection and Bayesian model averaging. This project will explore two approaches to model fitting. One approach consists of a stochastic search to estimate the non-zero coefficients. The second approach involves a maximization strategy to estimate the optimal model by applying a regularization term that incorporates information about the structure of a recursive partitioning of the domain. Initially, the model will be developed for Gaussian data. Later, it will be extended for observations in the exponential family of distributions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目将采用基于模型的方法开发空间数据的统计方法。位置参考观测的广泛可用性导致需要对非常大的空间数据集进行分析和预测。目前的空间数据模型在处理空间中不规则分布的大量观测数据时存在困难。该项目将开发用于大型数据集的方法,这些数据集包含的表面在研究区域的某些部分变化很小,但在该区域的其他部分变化很大。所开发的统计方法将适用于使用大型空间数据集的科学学科,包括定量环境科学、空间计量经济学和统计气候学。特别是,该项目将对从卫星观测到的基本气候变量的研究产生影响,如降水、积雪和野火。该项目还将为研究生提供教育和培训经验。将开发公开可用的软件。该研究项目将开发基于模型的非平稳空间场的地质统计学方法,该方法具有多分辨率结构,能够捕获不同空间尺度的变异性。分辨率随空间变化的事实增强了模型处理非平稳性的能力。为了实现对大型数据集的可扩展性,要开发的模型将通过使用紧凑支持的内核来诱导稀疏性,再加上精心定义的先验分布,为多分辨率系数引入强正则化。此外,本研究开发的模型拟合方法通过将问题转换为变量选择和贝叶斯模型平均的问题,避免了昂贵的跨维蒙特卡罗采样。本项目将探讨模型拟合的两种方法。一种方法是通过随机搜索来估计非零系数。第二种方法涉及一种最大化策略,通过应用正则化项来估计最优模型,该正则化项包含有关域递归划分结构的信息。最初,该模型将针对高斯数据进行开发。稍后,它将扩展到指数分布族的观测。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Construction and Estimation of Stationary Mixture Transition Distribution Models
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bruno Sanso其他文献

Bruno Sanso的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bruno Sanso', 18)}}的其他基金

Collaborative Research: Flexible Statistical Models to Blend Massive Geostationary-Derived Climate Data Records
合作研究:灵活的统计模型来融合大量对地静止轨道衍生的气候数据记录
  • 批准号:
    1953168
  • 财政年份:
    2020
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Standard Grant
Bayesian Inference for Peaks Over Threshold Models for Multivariate and Spatial Extremes
多元和空间极值的阈值模型峰值的贝叶斯推理
  • 批准号:
    1513076
  • 财政年份:
    2015
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Continuing Grant
Travel Support for the 12th ISBA World Meeting on Bayesian Statistics
第十二届 ISBA 贝叶斯统计世界会议的差旅支持
  • 批准号:
    1401118
  • 财政年份:
    2014
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Model Uncertainty and Multiplicity
CBMS 数学科学区域会议 - 模型不确定性和多重性
  • 批准号:
    1137825
  • 财政年份:
    2012
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Standard Grant
Space and Space-Time Models for Large Datasets
大型数据集的空间和时空模型
  • 批准号:
    0906765
  • 财政年份:
    2009
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Standard Grant
SGER: Evaluation of Community Climate System Model (CCSM) Constituent Transport Variability
SGER:社区气候系统模型 (CCSM) 成分传输变异性的评估
  • 批准号:
    0405451
  • 财政年份:
    2004
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Standard Grant
CMG: Improved Bayesian Estimators for Uncertainty in Climate System Properties
CMG:气候系统特性不确定性的改进贝叶斯估计
  • 批准号:
    0417753
  • 财政年份:
    2004
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Standard Grant

相似国自然基金

基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
  • 批准号:
    22108101
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
  • 批准号:
    31600794
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
针对Scale-Free网络的紧凑路由研究
  • 批准号:
    60673168
  • 批准年份:
    2006
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: DMS/NIGMS 1: Identifiability investigation of Multi-scale Models of Infectious Diseases
合作研究:DMS/NIGMS 1:传染病多尺度模型的可识别性研究
  • 批准号:
    10794480
  • 财政年份:
    2023
  • 资助金额:
    $ 28.01万
  • 项目类别:
Multi-scale functional connectivity in preclinical models of Parkinson's disease
帕金森病临床前模型的多尺度功能连接
  • 批准号:
    10543831
  • 财政年份:
    2022
  • 资助金额:
    $ 28.01万
  • 项目类别:
Multi-physics multi-scale models of the micro-mechanical environment of bone cells in cancer metastases
癌症转移中骨细胞微机械环境的多物理多尺度模型
  • 批准号:
    2746846
  • 财政年份:
    2022
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Studentship
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2022
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical models and computational tools for gene-gene interaction analyses by utilizing multi-scale omics
利用多尺度组学进行基因间相互作用分析的统计模型和计算工具
  • 批准号:
    RGPIN-2018-05147
  • 财政年份:
    2022
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-scale models of solute and ion transport in membrane proteins and artificial nanopores
膜蛋白和人造纳米孔中溶质和离子传输的多尺度模型
  • 批准号:
    RGPIN-2021-02439
  • 财政年份:
    2022
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-scale models for nonlinear wave-induced atmospheric phenomena
非线性波引起的大气现象的多尺度模型
  • 批准号:
    RGPIN-2018-05296
  • 财政年份:
    2022
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Discovery Grants Program - Individual
Accurate, Efficient, and Robust Adaptive Solution Methods and Models for Predicting Multi-Scale Physically-Complex Flows
用于预测多尺度物理复杂流的准确、高效、鲁棒的自适应解决方法和模型
  • 批准号:
    RGPIN-2019-06758
  • 财政年份:
    2022
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-scale morphologically realistic models for pipeline steels
管线钢的多尺度形态真实模型
  • 批准号:
    566871-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Alliance Grants
Multi-scale functional connectivity in preclinical models of Parkinson's disease
帕金森病临床前模型的多尺度功能连接
  • 批准号:
    10334884
  • 财政年份:
    2022
  • 资助金额:
    $ 28.01万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了