Intermittency and Physical Properties of Stochastic Partial Differential Equations

随机偏微分方程的间歇性和物理性质

基本信息

  • 批准号:
    1513556
  • 负责人:
  • 金额:
    $ 13.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

This project studies physical properties of the solutions to stochastic partial differential equations (SPDEs), which have been a growing topic of research in probability over the last decades. These equations are partial differential equations involving a random component, known as the noise. They mathematically model dynamical systems in a wide spectrum of fields. Physics is the most important of these and was the origin of the use of SPDEs. These equations appear for instance in models for growth at interfaces (the Kardar-Parisi-Zhang equation), models for the movement of galaxies, and polymer models, and also in models of randomly forced propagation of waves, such as the movement of DNA in a fluid. SPDEs also appear in biology, for instance in predator-prey models and models for growth of bacterial populations. They are also a tool of importance in the modeling of interest rates in mathematical finance. This project focuses on study of the property of intermittency for solutions to SPDEs: the fact that the solution develops high-valued peaks (atypical of the average behavior) concentrated on small spatial regions. This phenomenon and its conjectured connection to turbulence and chaos has been very carefully described by physicists, who conjectured many results, only a very few of which are mathematically proved. This research project aims to obtain a more profound understanding of this phenomenon. This field being relatively young, some effort will also be invested into popularizing these ideas among the scientific community, in particular among students and future researchers. More specifically, this project will focus on equations related to the Kardar-Parisi-Zhang (KPZ) equation of physics, which is the central component of the KPZ universality class, a class of probabilistic models appearing in many instances of interface growth phenomena, such as percolation of a liquid in a porous medium, development of a population of bacteria, or the movement of cars in heavy traffic. In order to establish and understand the intermittency of solutions, several new techniques, such as stochastic Young inequalities, moment estimates, and scaling properties have been developed in recent years. These techniques have been successful in specific cases, but more general and more precise results are still sought. Knowledge of the quantitative behavior of the moments of the solution to the SPDE, as well as almost-sure behavior of this solution, are extremely important when it comes to careful study the peaking phenomenon, for instance the position, size, movement, and fractal dimension of the peaks. The project will develop new methods, such as the use of Galton-Watson type processes. The main objective is to carefully understand the impact of the noise on the physical properties of the solution. Thus, the project aims to compare the impact of different types of noise (e.g., white, colored, fractional) on properties of the associated equations.
该项目研究随机偏微分方程 (SPDE) 解的物理性质,在过去的几十年里,随机偏微分方程一直是概率研究中一个日益增长的话题。这些方程是涉及随机分量(称为噪声)的偏微分方程。他们对广泛领域的动力系统进行数学建模。物理学是其中最重要的,也是 SPDE 使用的起源。这些方程出现在例如界面生长模型(Kardar-Parisi-Zhang 方程)、星系运动模型和聚合物模型中,也出现在波的随机强制传播模型中,例如流体中 DNA 的运动。 SPDE 也出现在生物学中,例如捕食者-猎物模型和细菌种群生长模型。它们也是数学金融中利率建模的重要工具。该项目重点研究 SPDE 解的间歇性特性:该解产生集中在小空间区域的高值峰值(非典型的平均行为)。物理学家已经非常仔细地描述了这种现象及其与湍流和混沌的推测联系,他们推测了许多结果,但其中只有极少数得到了数学证明。本研究项目旨在更深入地了解这一现象。这个领域相对较年轻,我们还将投入一些努力在科学界,特别是学生和未来的研究人员中推广这些想法。更具体地说,该项目将重点关注与物理 Kardar-Parisi-Zhang (KPZ) 方程相关的方程,该方程是 KPZ 普适类的核心组成部分,这是一类出现在界面增长现象的许多实例中的概率模型,例如多孔介质中液体的渗透、细菌群体的发展或交通繁忙中的汽车运动。为了建立和理解解的间歇性,近年来开发了几种新技术,例如随机杨氏不等式、矩估计和缩放特性。这些技术在特定情况下取得了成功,但仍寻求更普遍和更精确的结果。当仔细研究峰化现象(例如峰的位置、大小、移动和分形维数)时,了解 SPDE 解矩的定量行为以及该解的几乎确定的行为极其重要。该项目将开发新方法,例如使用高尔顿-沃森型工艺。主要目标是仔细了解噪声对解决方案物理特性的影响。因此,该项目旨在比较不同类型的噪声(例如白色、彩色、分数)对相关方程属性的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Conus其他文献

A Gaussian Markov alternative to fractional Brownian motion for pricing financial derivatives
用于金融衍生品定价的分数布朗运动的高斯马尔可夫替代方案
Weak nonmild solutions to some SPDEs
某些 SPDE 的弱非温和解
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Conus;D. Khoshnevisan
  • 通讯作者:
    D. Khoshnevisan
On the existence and position of the farthest peaks of a family of stochastic heat and wave equations
关于一族随机热方程和波动方程最远峰的存在性和位置
Initial measures for the stochastic heat equation
随机热方程的初始测量
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Conus;Mathew Joseph;D. Khoshnevisan;Shang
  • 通讯作者:
    Shang
Correlation-length bounds, and estimates for intermittent islands in parabolic SPDEs
相关长度界限以及抛物线 SPDE 中间歇岛的估计
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Conus;Mathew Joseph;D. Khoshnevisan
  • 通讯作者:
    D. Khoshnevisan

Daniel Conus的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

面向智能电网基础设施Cyber-Physical安全的自治愈基础理论研究
  • 批准号:
    61300132
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
  • 批准号:
    2347294
  • 财政年份:
    2024
  • 资助金额:
    $ 13.9万
  • 项目类别:
    Standard Grant
CAREER: Field-scale quantification of dynamic physical properties in shrink-swell soils for improved hydrological prediction
职业:对收缩膨胀土壤的动态物理特性进行现场规模量化,以改进水文预测
  • 批准号:
    2337711
  • 财政年份:
    2024
  • 资助金额:
    $ 13.9万
  • 项目类别:
    Continuing Grant
Synthesis and exploration of novel physical properties of two-dimensional layered quasicrystal
二维层状准晶的合成与新物理性质的探索
  • 批准号:
    23K04355
  • 财政年份:
    2023
  • 资助金额:
    $ 13.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Control of linear and nonlinear physical properties based on rational design
基于合理设计的线性和非线性物理特性的控制
  • 批准号:
    23K04688
  • 财政年份:
    2023
  • 资助金额:
    $ 13.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theory of physical properties of friction in macroscopic objects by continuum analysis
通过连续介质分析研究宏观物体摩擦物理性质的理论
  • 批准号:
    22KJ2190
  • 财政年份:
    2023
  • 资助金额:
    $ 13.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Leveraging physical properties of modern flash memory chips for resilient, secure, and energy-efficient edge storage systems
职业:利用现代闪存芯片的物理特性打造弹性、安全且节能的边缘存储系统
  • 批准号:
    2346853
  • 财政年份:
    2023
  • 资助金额:
    $ 13.9万
  • 项目类别:
    Continuing Grant
Understanding of physical properties on carbon networks with unique geometric structures
了解具有独特几何结构的碳网络的物理特性
  • 批准号:
    23K17661
  • 财政年份:
    2023
  • 资助金额:
    $ 13.9万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Challenge to Synthesis of Propeller-Shaped Heteroacenes and Elucidation of Their Physical Properties
螺旋桨形杂并苯的合成挑战及其物理性质的阐明
  • 批准号:
    23K17917
  • 财政年份:
    2023
  • 资助金额:
    $ 13.9万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Investigating the physical properties of the interstellar medium of galaxies in the Epoch of Reionization with ALMA, JWST, and SOFIA telescopes
使用 ALMA、JWST 和 SOFIA 望远镜研究再电离时期星系星际介质的物理特性
  • 批准号:
    23KJ2052
  • 财政年份:
    2023
  • 资助金额:
    $ 13.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Ageing of plutonium oxide powders: evolution of physical properties
氧化钚粉末的老化:物理性能的演变
  • 批准号:
    2885555
  • 财政年份:
    2023
  • 资助金额:
    $ 13.9万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了