RI: Medium: An Analysis of the Consequences of Cortical Structure on Computation

RI:中:皮质结构对计算的影响分析

基本信息

  • 批准号:
    1513779
  • 负责人:
  • 金额:
    $ 70.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Networks of cortical neurons are clearly organized into layers and columns, but relatively little is known about how these arrangements affect cortical computations. To approach this issue, a 512 micro-electrode array will be used to stimulate and record activity from hundreds of cortical neurons. With this, the inputs and outputs of a cortical network can be experimentally controlled. A recently-developed framework for understanding neural computation known as "reservoir computing" permits the computational power of neural networks to be quantified based on knowledge of their inputs and outputs. The 512-electrode system allows input stimulation to be localized to different cortical layers or columns. Similarly, outputs can be selected by recording from different layers or columns. Thus, the contributions of layers and columns to computations, and the types of computations they perform, can be measured and compared. The results of this research are expected to increase the understanding of how the cortex attains its remarkable computational power. In addition, the results of this work are expected to inform future designs of brain-like computing circuits. To promote scientific education and outreach, an existing software package called "Simbrain" will be further developed and disseminated. This package will allow students from high school level and above to understand how cortical networks transform inputs into outputs as they perform computations.Three specific aims will be pursued. First, the measurement of computational capacity must be based on realistic levels of random background stimulation. The high-conductance state is a well-known phenomenon in vivo resulting from constant random synaptic inputs, and is also a common feature in many (particularly reservoir computing) neural circuit models. The 512-electrode array will be used to deliver background stimulation to determine levels that will improve computational performance. Second, layer input and output locations will be studied. Using kernel quality and VC-dimension metrics, the computational power and role of each layer taken individually or as a whole will be assessed. It is possible that some layers more strongly generalize input patterns while others separate them. Thus it will be possible to dissect the computational contribution of each layer. Third, the same metrics will be applied to stimulation to one column which feeds to another. Here the computational power and role of multiple columns will be assessed, and any computational differences between columns directly stimulated by the array and columns stimulated by other columns can be observed.
皮质神经元的网络被清楚地组织成层和列,但关于这些排列如何影响皮质计算的了解相对较少。为了解决这个问题,将使用512微电极阵列来刺激和记录数百个皮层神经元的活动。这样,皮层网络的输入和输出就可以通过实验来控制。最近开发的用于理解神经计算的框架被称为“水库计算”,其允许基于其输入和输出的知识来量化神经网络的计算能力。512电极系统允许输入刺激定位到不同的皮质层或列。类似地,可以通过从不同层或列记录来选择输出。因此,可以测量和比较层和列对计算的贡献以及它们执行的计算类型。这项研究的结果有望增加对大脑皮层如何获得其非凡计算能力的理解。此外,这项工作的结果有望为未来的类脑计算电路设计提供信息。为了促进科学教育和推广,将进一步开发和传播一个名为“Simbrain”的现有软件包。本课程将让高中及以上的学生了解皮质网络在执行计算时如何将输入转换为输出。首先,计算能力的测量必须基于随机背景刺激的现实水平。高电导状态是由恒定随机突触输入引起的体内众所周知的现象,并且也是许多(特别是库计算)神经电路模型中的共同特征。512电极阵列将用于提供背景刺激,以确定将提高计算性能的水平。其次,将研究层输入和输出位置。使用内核质量和VC维度度量,将单独或整体评估每一层的计算能力和作用。有可能某些层更强地概括输入模式,而其他层将它们分开。因此,将有可能剖析每一层的计算贡献。第三,相同的度量将被应用于对一个列的激励,该激励馈送到另一个列。这里将评估多个列的计算能力和作用,并且可以观察到由阵列直接刺激的列与由其他列刺激的列之间的任何计算差异。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Beggs其他文献

John Beggs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Beggs', 18)}}的其他基金

MRI: Acquisition of a High-Density Microelectrode Array for Recording and Stimulating Hundreds of Neurons
MRI:获取用于记录和刺激数百个神经元的高密度微电极阵列
  • 批准号:
    1429500
  • 财政年份:
    2014
  • 资助金额:
    $ 70.63万
  • 项目类别:
    Standard Grant
Testing the Criticality Hypothesis in Local Cortical Circuits
测试局部皮质回路的临界假设
  • 批准号:
    1058291
  • 财政年份:
    2011
  • 资助金额:
    $ 70.63万
  • 项目类别:
    Continuing Grant
Collaborative Research: Causal Connectivity and Computations in Hundreds of Neurons in Cortex
合作研究:皮层数百个神经元的因果连接和计算
  • 批准号:
    0904912
  • 财政年份:
    2009
  • 资助金额:
    $ 70.63万
  • 项目类别:
    Standard Grant
Social Networks and Displacement After Hurricane Katrina
卡特里娜飓风后的社交网络和流离失所
  • 批准号:
    0553702
  • 财政年份:
    2005
  • 资助金额:
    $ 70.63万
  • 项目类别:
    Standard Grant
Attractors and Criticality in Cortical Slice Cultures
皮质切片培养中的吸引子和临界性
  • 批准号:
    0343636
  • 财政年份:
    2004
  • 资助金额:
    $ 70.63万
  • 项目类别:
    Continuing Grant
Discovery Learning with Case Studies for Undergraduates Electromagnetics
本科生电磁学案例研究的发现学习
  • 批准号:
    9850896
  • 财政年份:
    1998
  • 资助金额:
    $ 70.63万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 70.63万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312373
  • 财政年份:
    2023
  • 资助金额:
    $ 70.63万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: From Acoustic Signal to Morphosyntactic Analysis in One End-to-End Neural System
合作研究:RI:媒介:从声学信号到端到端神经系统中的形态句法分析
  • 批准号:
    2211952
  • 财政年份:
    2022
  • 资助金额:
    $ 70.63万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: From Acoustic Signal to Morphosyntactic Analysis in One End-to-End Neural System
合作研究:RI:媒介:从声学信号到端到端神经系统中的形态句法分析
  • 批准号:
    2211951
  • 财政年份:
    2022
  • 资助金额:
    $ 70.63万
  • 项目类别:
    Standard Grant
RI: Medium: Robots That Learn From Description Through Synthesis and Analysis
RI:媒介:通过综合和分析从描述中学习的机器人
  • 批准号:
    1763705
  • 财政年份:
    2018
  • 资助金额:
    $ 70.63万
  • 项目类别:
    Standard Grant
RI: Medium: Assessing Speaker and Teacher Effectiveness through Gestural Analysis, EEG Recordings, and Eye Tracking
RI:中:通过手势分析、脑电图记录和眼动追踪评估演讲者和教师的有效性
  • 批准号:
    1513853
  • 财政年份:
    2015
  • 资助金额:
    $ 70.63万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research: Models of Handshape Articulatory Phonology for Recognition and Analysis of American Sign Language
RI:媒介:协作研究:用于识别和分析美国手语的手形发音音系模型
  • 批准号:
    1409837
  • 财政年份:
    2014
  • 资助金额:
    $ 70.63万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research: Models of Handshape Articulatory Phonology for Recognition and Analysis of American Sign Language
RI:媒介:协作研究:用于识别和分析美国手语的手形发音音系模型
  • 批准号:
    1409886
  • 财政年份:
    2014
  • 资助金额:
    $ 70.63万
  • 项目类别:
    Standard Grant
RI: Medium: Bringing Sentiment Analysis and Social Network Analysis Together
RI:媒介:将情感分析和社交网络分析结合在一起
  • 批准号:
    1159679
  • 财政年份:
    2012
  • 资助金额:
    $ 70.63万
  • 项目类别:
    Continuing Grant
RI: Medium: Integrated Analysis and Synthesis for Data Mining in a Video Network
RI:媒介:视频网络中数据挖掘的集成分析与综合
  • 批准号:
    0905671
  • 财政年份:
    2009
  • 资助金额:
    $ 70.63万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了