RI: Medium: Collaborative Research: Novel microLIDAR Design and Sensing Algorithms for Flapping-Wing Micro-Aerial Vehicles
RI:中:合作研究:扑翼微型飞行器的新型 microLIDAR 设计和传感算法
基本信息
- 批准号:1514154
- 负责人:
- 金额:$ 40.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project makes it possible for a tiny robotic bee to sense its distance to any nearby object. Such depth sensing for a small robot insect pushes the limits of sensor and algorithm design in terms size, weight, computing, and power. The key idea is joint design; every part of the robotic insect is optimized together, from wing design and optics to intelligent algorithms and efficient computation. This is possible by inter-disciplinary work across scientists and engineers from diverse backgrounds. The lessons learned through this project can be applied to transform other applications that involve small devices including medical sensors and endoscope imaging, smart homes and the internet of things, agricultural and industrial monitoring systems, and mobile vision for search and rescue.Lidar sensing has enabled large robotic cars to navigate complex environments. This proposal introduces designs for "micro-lidar" that can be used on insect-scale aerial robots. Making micro-lidar work on small platforms involves four intertwined research thrusts. The first thrust uses MEMS mirrors and wide-angle optics to sense and modulate the laser pulses. The second thrust is adapting signal processing algorithms to estimate range data at this scale. The third thrust is developing novel perception and navigation algorithms to map the indoor environments using a micro-aerial vehicle. The fourth thrust is to improve robotic insect flight to allow novel manipulations that require knowledge of the surrounding range map. The utility of these sensors will be demonstrated on the robobee for novel maneuvers and building topo-feature maps of indoor environments.
这个项目使一个微小的机器蜜蜂能够感知它与附近任何物体的距离。这种用于小型机器昆虫的深度感测推动了传感器和算法设计在尺寸、重量、计算和功率方面的极限。关键的想法是联合设计;机器昆虫的每个部分都是一起优化的,从翅膀设计和光学到智能算法和高效计算。这是可能的跨学科工作的科学家和工程师来自不同的背景。通过该项目获得的经验教训可以应用于改造其他涉及小型设备的应用,包括医疗传感器和内窥镜成像,智能家居和物联网,农业和工业监控系统以及搜索和救援的移动的视觉。激光雷达传感使大型机器人汽车能够在复杂环境中导航。该提案介绍了可用于昆虫规模空中机器人的“微型激光雷达”的设计。使微型激光雷达在小型平台上工作涉及四个相互交织的研究重点。第一个推力使用MEMS反射镜和广角光学器件来感测和调制激光脉冲。第二个推动力是采用信号处理算法来估计这个尺度的距离数据。第三个重点是开发新的感知和导航算法,使用微型飞行器绘制室内环境。第四个重点是改进机器人昆虫飞行,以允许需要周围范围地图知识的新颖操作。这些传感器的实用性将在robobee上展示,用于新颖的机动和室内环境的地形特征地图的构建。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MEMS mirrors submerged in liquid for wide-angle scanning
MEMS 反射镜浸入液体中进行广角扫描
- DOI:10.1109/transducers.2015.7181056
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Zhang, Xiaoyang;Zhang, Rui;Koppal, Sanjeev;Butler, Lisa;Cheng, Xiang;Xie, Huikai
- 通讯作者:Xie, Huikai
Wide-angle structured light with a scanning MEMS mirror in liquid
- DOI:10.1364/oe.24.003479
- 发表时间:2016-02-22
- 期刊:
- 影响因子:3.8
- 作者:Zhang, Xiaoyang;Koppal, Sanjeev J.;Xie, Huikai
- 通讯作者:Xie, Huikai
Dense Lissajous sampling and interpolation for dynamic light-transport
用于动态光传输的密集利萨如采样和插值
- DOI:10.1364/oe.425061
- 发表时间:2021
- 期刊:
- 影响因子:3.8
- 作者:Liu, Xiaomeng;Henderson, Kristofer;Rego, Joshua;Jayasuriya, Suren;Koppal, Sanjeev
- 通讯作者:Koppal, Sanjeev
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanjeev Koppal其他文献
Data fusion for a vision-aided radiological detection system: Calibration algorithm performance
- DOI:
10.1016/j.nima.2018.01.102 - 发表时间:
2018-05-11 - 期刊:
- 影响因子:
- 作者:
Kelsey Stadnikia;Kristofer Henderson;Allan Martin;Phillip Riley;Sanjeev Koppal;Andreas Enqvist - 通讯作者:
Andreas Enqvist
Data fusion for a vision-aided radiological detection system: Correlation methods for single source tracking
- DOI:
10.1016/j.nima.2019.02.040 - 发表时间:
2020-02-21 - 期刊:
- 影响因子:
- 作者:
Kelsey Stadnikia;Kristofer Henderson;Sanjeev Koppal;Andreas Enqvist - 通讯作者:
Andreas Enqvist
Sanjeev Koppal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanjeev Koppal', 18)}}的其他基金
CAREER: Fast Foveation: Bringing Active Vision into the Camera
职业:快速注视点:将主动视觉带入相机
- 批准号:
1942444 - 财政年份:2020
- 资助金额:
$ 40.65万 - 项目类别:
Continuing Grant
RI: Small: Collaborative Research: Dynamic Light Transport Acquisition and Applications to Computational Illumination
RI:小型:合作研究:动态光传输采集及其在计算照明中的应用
- 批准号:
1909729 - 财政年份:2019
- 资助金额:
$ 40.65万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 40.65万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 40.65万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
$ 40.65万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 40.65万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312374 - 财政年份:2023
- 资助金额:
$ 40.65万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312373 - 财政年份:2023
- 资助金额:
$ 40.65万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313149 - 财政年份:2023
- 资助金额:
$ 40.65万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
- 批准号:
2312955 - 财政年份:2023
- 资助金额:
$ 40.65万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
- 批准号:
2313137 - 财政年份:2023
- 资助金额:
$ 40.65万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313150 - 财政年份:2023
- 资助金额:
$ 40.65万 - 项目类别:
Continuing Grant