RI: Medium: Sentential Decision Diagrams
RI:中:句子决策图
基本信息
- 批准号:1514253
- 负责人:
- 金额:$ 70万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Logical and probabilistic reasoning are now routinely used in various fields of computer science and engineering, including artificial intelligence in particular. These modes of reasoning currently underlie systems that perform automated diagnosis, planning, software and hardware verification, web information extraction, bioinformatics, vision and robotics. This project aims at advancing the state of the art in logical and probabilistic reasoning, to allow scientists and engineers to learn and reason with much larger models than is currently possible. The project is based on a particular computational paradigm, known as knowledge compilation, which transforms knowledge into forms that facilitate their efficient processing by reasoning and learning algorithms. The results expected from this project will provide domain-independent, highly scalable, tools and techniques for addressing computational problems that arise in healthcare, industrial automation, and information management. The project will also provide a context for training graduate students in the computational paradigm of knowledge compilation, and will target the integration of this paradigm into computer science curricula.More specifically, the project aims to develop a new framework for knowledge compilation based on the recently discovered Sentential Decision Diagram (SDD). The SDD is a target compilation language, which generalizes the Ordered Binary Decision Diagram (OBDD) that has been quite influential in many areas of computer science and engineering. This project has two parts. The first part is concerned with developing the SDD compilation language further, both theoretically and practically. On the theoretical side, there is a number of pending of questions relating to lower and upper bounds on SDDs, in addition to questions that must be answered to fully understand their relation to OBDDs. On the practical side, the SDD package needs to be extended to enhance its scalability and to provide new functionality that is needed for fully exploiting SDDs in a wider spectrum of applications. The second part of the project is concerned with a more recent discovery: The probabilistic SDD (PSDD). This compilation language aims at inducing probability distributions over propositional theories, in a very principled and efficient manner. Our objective here is to develop PSDDs into a mature tool, with a corresponding public package, for learning tractable probabilistic models under massive logical constraints, and for compiling probabilistic graphical models into PSDDs for the purpose of more scalable probabilistic reasoning.
逻辑和概率推理现在经常用于计算机科学和工程的各个领域,特别是包括人工智能。这些推理模式目前是执行自动诊断、规划、软件和硬件验证、网络信息提取、生物信息学、视觉和机器人技术的系统的基础。该项目旨在推进逻辑和概率推理的最新技术,使科学家和工程师能够学习和推理比目前可能的更大的模型。该项目基于一种特定的计算范式,称为知识汇编,它将知识转化为通过推理和学习算法进行有效处理的形式。该项目的预期结果将提供独立于领域的,高度可扩展的工具和技术,用于解决医疗保健,工业自动化和信息管理中出现的计算问题。该项目还将为培训研究生提供知识汇编的计算范式的背景,并将把这种范式纳入计算机科学课程。更具体地说,该项目旨在根据最近发现的句子决策图(SDD)开发一个新的知识汇编框架。SDD是一种目标编译语言,它推广了在计算机科学和工程的许多领域都很有影响力的有序二元决策图(OBDD)。这个项目有两个部分。第一部分是关于SDD编译语言的进一步发展,包括理论和实践。在理论方面,除了必须回答以充分理解其与OBDD的关系的问题之外,还有一些与SDD的下限和上限有关的悬而未决的问题。在实践方面,SDD包需要扩展,以增强其可扩展性,并提供在更广泛的应用中充分利用SDD所需的新功能。该项目的第二部分涉及一个更新的发现:概率SDD(PSDD)。这种编译语言旨在以一种非常原则和有效的方式在命题理论上归纳概率分布。我们的目标是将PSDDs开发成一个成熟的工具,并提供相应的公共软件包,用于在大量逻辑约束下学习易于处理的概率模型,并将概率图形模型编译成PSDDs,以实现更可扩展的概率推理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adnan Darwiche其他文献
Solving MAP Exactly by Searching on Compiled Arithmetic Circuits
通过搜索编译运算电路精确求解MAP
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Jinbo Huang;M. Chavira;Adnan Darwiche - 通讯作者:
Adnan Darwiche
A Symbolic Generalization of Probability Theory
概率论的符号推广
- DOI:
- 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
Adnan Darwiche;M. Ginsberg - 通讯作者:
M. Ginsberg
A Greedy Algorithm for Time – Space Tradeoff in Probabilistic Inference
概率推理中时空权衡的贪婪算法
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
David Allen;Adnan Darwiche;James D. Park - 通讯作者:
James D. Park
Tractable Knowledge Representation Formalisms
- DOI:
10.1017/cbo9781139177801.006 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Adnan Darwiche - 通讯作者:
Adnan Darwiche
New Advances in Compiling CNF into Decomposable Negation Normal Form
- DOI:
- 发表时间:
2004-08 - 期刊:
- 影响因子:0
- 作者:
Adnan Darwiche - 通讯作者:
Adnan Darwiche
Adnan Darwiche的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adnan Darwiche', 18)}}的其他基金
RI: Small: Reasoning About the Behavior of Artificial Intelligence Systems
RI:小:推理人工智能系统的行为
- 批准号:
1910317 - 财政年份:2019
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
RI: Small: Generalized Anytime Probabilistic Inference
RI:小:广义随时概率推理
- 批准号:
1118122 - 财政年份:2011
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
RI: Small: Universal Automated Reasoning by Knowledge Compilation
RI:小:通过知识编译进行通用自动推理
- 批准号:
0916161 - 财政年份:2009
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
RI: Probabilistic Reasoning with Bounded Computational Resources
RI:有限计算资源的概率推理
- 批准号:
0713166 - 财政年份:2007
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Compiling Knowledge for Tractable and Embedded Inference
编译知识以进行易于处理和嵌入式推理
- 批准号:
9988543 - 财政年份:2000
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321102 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
RII Track-4:@NASA: Bluer and Hotter: From Ultraviolet to X-ray Diagnostics of the Circumgalactic Medium
RII Track-4:@NASA:更蓝更热:从紫外到 X 射线对环绕银河系介质的诊断
- 批准号:
2327438 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344489 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant














{{item.name}}会员




