RI: Medium: Collaborative Research: Understanding Individual-Level Speech Variability: From Novel Articulatory Data to Robust Speaker Recognition
RI:媒介:协作研究:了解个体层面的语音变异性:从新颖的发音数据到强大的说话人识别
基本信息
- 批准号:1514544
- 负责人:
- 金额:$ 119.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Speech is a unique human capability. The vocal tract is the universal human instrument played with great dexterity and skill in the production of speech to convey rich linguistic and paralinguistic information. The project will enable fundamental understanding of how individuals differ in their speech articulation due to differences in shape and size of their physical vocal instrument. Knowledge of how people differ in their speech production can help create improved automatic speaker recognition, technologies important for national security. The project can inform design of technologies for robust speech-based access for all members of the population, including children, the elderly, and non-native speakers of a language. Results from the project can also assist in better understanding and treating disorders (e.g., cleft lip/palate), illness (e.g., head and neck cancer, apnea) or injury where human speech articulation is affected. The novel imaging data from 200 individuals, and associated tools, annotations and interpretations created by the interdisciplinary team will be shared broadly with the scientific community. The project will provide a unique research training opportunity for students in integrated speech science and technology. The overarching goal of this project is to advance scientific understanding of how vocal tract morphology and speech articulation interact and explain the variant and invariant aspects of speech signal properties across talkers. Of particular scientific interest is the nature of articulatory strategies adopted by individuals in the presence of structural differences across them to achieve phonetic equivalence. Equally of interest are what aspects of, and how, vocal tract morphological differences are reflected in the acoustic speech signal, and if those differences can be estimated from speech acoustics. A crucial part of this goal is to create forward and inverse computational models that relate vocal tract details to speech acoustics toward shedding light on individual speaker differences and informing design of robust speaker recognition technologies. This project goes beyond state-of-the-art methods by focusing on direct investigation of the dynamic human vocal tract using novel imaging techniques and computational modeling to illuminate inter-speaker variability in vocal tract structure, as well as the strategies by which linguistic articulation is implemented. Using novel Magnetic Resonance Imaging with superior spatial resolution of the entire moving vocal tract that we helped develop (dynamic realtime 2D with excellent temporal resolution and accelerated volumetric 3D), the project will gather and quantify spatio-temporal details of speech production from 160 native American English covering the major dialectal regions of North America and 40 non-native speakers. The experimental, theoretical, and methodological approaches investigating the interplay between structure (shape and size) and function (dynamics of vocal-tract shaping and its acoustic consequences) can lead to new theoretical advances with improved phonetic characterizations of linguistic units that are general across speakers. It also offers the ability to explain individual specific speech patterns that can improve both understanding the scientific underpinning and creating robust automatic speaker recognition technology, enabling to determine not only that two talkers are different by the adoption of novel speaker dependent features, but also how and why they differ, by analyzing biologically-inspired details of structure and articulation.
说话是人类独有的能力。声道是人类普遍使用的乐器,在语言的产生和传递丰富的语言和副语言信息中发挥着极大的灵活性和技巧。该项目将使人们能够从根本上了解个体如何因其身体发声工具的形状和大小的差异而导致其语音清晰度的差异。了解人们在说话时的差异有助于改进自动说话人识别技术,这项技术对国家安全至关重要。该项目可以为所有人口(包括儿童、老人和非母语人士)提供基于语音的强大访问技术设计信息。该项目的结果还可以帮助更好地理解和治疗疾病(如唇裂/腭裂)、疾病(如头颈癌、呼吸暂停)或人类语言表达受到影响的伤害。来自200个人的新成像数据,以及跨学科团队创建的相关工具,注释和解释将与科学界广泛共享。该项目将为综合语音科学与技术的学生提供一个独特的研究训练机会。该项目的总体目标是促进对声道形态和语音发音如何相互作用的科学理解,并解释说话者语音信号特性的变异和不变方面。特别令人感兴趣的是,在存在结构差异的情况下,个体为实现语音对等而采用的发音策略的性质。同样令人感兴趣的是,声道形态差异的哪些方面以及如何反映在声学语音信号中,以及这些差异是否可以从语音声学中估计出来。该目标的一个关键部分是创建将声道细节与语音声学联系起来的正向和反向计算模型,以揭示个体说话者的差异,并为设计稳健的说话者识别技术提供信息。该项目超越了最先进的方法,专注于动态人类声道的直接调查,使用新颖的成像技术和计算模型来阐明声道结构中的说话人间变异性,以及实现语言发音的策略。使用我们帮助开发的具有优越空间分辨率的整个运动声道的新型磁共振成像(具有优异时间分辨率的动态实时2D和加速体积3D),该项目将收集和量化来自160个北美主要方言地区的美国本土英语和40个非母语人士的语音产生的时空细节。研究结构(形状和大小)和功能(声道形成的动力学及其声学后果)之间相互作用的实验、理论和方法方法,可以通过改进语言单位的语音特征,在说话者之间普遍存在,从而导致新的理论进展。它还提供了解释个人特定语音模式的能力,可以提高对科学基础的理解,并创建强大的自动说话人识别技术,不仅可以通过采用新颖的说话人依赖特征来确定两个说话人的不同之处,还可以通过分析生物学启发的结构和发音细节来确定他们如何以及为什么不同。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shrikanth Narayanan其他文献
Clinical note section classification on doctor-patient conversations in low-resourced settings
资源匮乏地区医患对话的临床记录部分分类
- DOI:
10.18653/v1/2023.nlpmc-1.1 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Zhuohao Chen;Jangwon Kim;Yang Liu;Shrikanth Narayanan - 通讯作者:
Shrikanth Narayanan
Seeing speech: Capturing vocal tract shaping using real-time magnetic resonance imaging [Exploratory
看到语音:使用实时磁共振成像捕捉声道形状 [探索性
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
E. Bresch;Yoon;Krishna Nayak;Dani Byrd;Shrikanth Narayanan - 通讯作者:
Shrikanth Narayanan
Latent acoustic topic models for unstructured audio classification
用于非结构化音频分类的潜在声学主题模型
- DOI:
10.1017/atsip.2012.7 - 发表时间:
2012 - 期刊:
- 影响因子:3.2
- 作者:
Samuel Kim;P. Georgiou;Shrikanth Narayanan - 通讯作者:
Shrikanth Narayanan
Proceedings of the 8th Annual Conference on the Science of Dissemination and Implementation
- DOI:
10.1186/s13012-016-0452-0 - 发表时间:
2016-08-01 - 期刊:
- 影响因子:13.400
- 作者:
David Chambers;Lisa Simpson;Felicia Hill-Briggs;Gila Neta;Cynthia Vinson;David Chambers;Rinad Beidas;Steven Marcus;Gregory Aarons;Kimberly Hoagwood;Sonja Schoenwald;Arthur Evans;Matthew Hurford;Ronnie Rubin;Trevor Hadley;Frances Barg;Lucia Walsh;Danielle Adams;David Mandell;Lindsey Martin;Joseph Mignogna;Juliette Mott;Natalie Hundt;Michael Kauth;Mark Kunik;Aanand Naik;Jeffrey Cully;Alan McGuire;Dominique White;Tom Bartholomew;John McGrew;Lauren Luther;Angie Rollins;Michelle Salyers;Brittany Cooper;Angie Funaiole;Julie Richards;Amy Lee;Gwen Lapham;Ryan Caldeiro;Paula Lozano;Tory Gildred;Carol Achtmeyer;Evette Ludman;Megan Addis;Larry Marx;Katharine Bradley;Tonya VanDeinse;Amy Blank Wilson;Burgin Stacey;Byron Powell;Alicia Bunger;Gary Cuddeback;Miya Barnett;Nicole Stadnick;Lauren Brookman-Frazee;Anna Lau;Shannon Dorsey;Michael Pullmann;Shannon Mitchell;Robert Schwartz;Arethusa Kirk;Kristi Dusek;Marla Oros;Colleen Hosler;Jan Gryczynski;Carolina Barbosa;Laura Dunlap;David Lounsbury;Kevin O’Grady;Barry Brown;Laura Damschroder;Thomas Waltz;Byron Powell;Mona Ritchie;Thomas Waltz;David Atkins;Zac E. Imel;Bo Xiao;Doğan Can;Panayiotis Georgiou;Shrikanth Narayanan;Cady Berkel;Carlos Gallo;Irwin Sandler;C. Hendricks Brown;Sharlene Wolchik;Anne Marie Mauricio;Carlos Gallo;C. Hendricks Brown;Sanjay Mehrotra;Dharmendra Chandurkar;Siddhartha Bora;Arup Das;Anand Tripathi;Niranjan Saggurti;Anita Raj;Eric Hughes;Brian Jacobs;Eric Kirkendall;Danielle Loeb;Katy Trinkley;Michael Yang;Andrew Sprowell;Donald Nease;Aaron Lyon;Cara Lewis;Meredith Boyd;Abigail Melvin;Semret Nicodimos;Freda Liu;Nathanial Jungbluth;Aaron Lyon;Cara Lewis;Meredith Boyd;Abigail Melvin;Semret Nicodimos;Freda Liu;Nathanial Jungbluth;Allen Flynn;Zach Landis-Lewis;Anne Sales;Jure Baloh;Marcia Ward;Xi Zhu;Ian Bennett;Jurgen Unutzer;Johnny Mao;Enola Proctor;Mindy Vredevoogd;Ya-Fen Chan;Nathaniel Williams;Phillip Green;Steven Bernstein;June-Marie Rosner;Michelle DeWitt;Jeanette Tetrault;James Dziura;Allen Hsiao;Scott Sussman;Patrick O’Connor;Benjamin Toll;Michael Jones;Julie Gassaway;Jonathan Tobin;Douglas Zatzick;Angela R. Bradbury;Linda Patrick-Miller;Brian Egleston;Olufunmilayo I. Olopade;Michael J. Hall;Mary B. Daly;Linda Fleisher;Generosa Grana;Pamela Ganschow;Dominique Fetzer;Amanda Brandt;Dana Farengo-Clark;Andrea Forman;Rikki S. Gaber;Cassandra Gulden;Janice Horte;Jessica Long;Rachelle Lorenz Chambers;Terra Lucas;Shreshtha Madaan;Kristin Mattie;Danielle McKenna;Susan Montgomery;Sarah Nielsen;Jacquelyn Powers;Kim Rainey;Christina Rybak;Michelle Savage;Christina Seelaus;Jessica Stoll;Jill Stopfer;Shirley Yao;Susan Domchek;Erin Hahn;Corrine Munoz-Plaza;Jianjin Wang;Jazmine Garcia Delgadillo;Brian Mittman;Michael Gould;Shuting (Lily) Liang;Michelle C. Kegler;Megan Cotter;Emily Phillips;April Hermstad;Rentonia Morton;Derrick Beasley;Jeremy Martinez;Kara Riehman;David Gustafson;Lisa Marsch;Louise Mares;Andrew Quanbeck;Fiona McTavish;Helene McDowell;Randall Brown;Chantelle Thomas;Joseph Glass;Joseph Isham;Dhavan Shah;Jane Liebschutz;Karen Lasser;Katherine Watkins;Allison Ober;Sarah Hunter;Karen Lamp;Brett Ewing;Juliet Iwelunmor;Joyce Gyamfi;Sarah Blackstone;Nana Kofi Quakyi;Jacob Plange-Rhule;Gbenga Ogedegbe;Pritika Kumar;Nancy Van Devanter;Nam Nguyen;Linh Nguyen;Trang Nguyen;Nguyet Phuong;Donna Shelley;Sian Rudge;Etienne Langlois;Andrea Tricco;Sherry Ball;Anne Lambert-Kerzner;Christine Sulc;Carol Simmons;Jeneen Shell-Boyd;Taryn Oestreich;Ashley O’Connor;Emily Neely;Marina McCreight;Amy Labebue;Doreen DiFiore;Diana Brostow;P. Michael Ho;David Aron;Jillian Harvey;Megan McHugh;Dennis Scanlon;Rebecca Lee;Erica Soltero;Nathan Parker;Lorna McNeill;Tracey Ledoux;Jessie-Lee McIsaac;Kate MacLeod;Nicole Ata;Sherry Jarvis;Sara Kirk;Jonathan Purtle;Elizabeth Dodson;Ross Brownson;Brian Mittman;Geoffrey Curran;Geoffrey Curran;Jeffrey Pyne;Gregory Aarons;Mark Ehrhart;Elisa Torres;Edward Miech;Edward Miech;Kathleen Stevens;Alison Hamilton;Deborah Cohen;Deborah Padgett;Alexandra Morshed;Rupa Patel;Beth Prusaczyk;David C. Aron;Divya Gupta;Sherry Ball;Rosa Hand;Jenica Abram;Taylor Wolfram;Molly Hastings;Sarah Moreland-Russell;Rachel Tabak;Alex Ramsey;Ana Baumann;Emily Kryzer;Katherine Montgomery;Ericka Lewis;Margaret Padek;Byron Powell;Ross Brownson;Cezar Brian Mamaril;Glen Mays;Keith Branham;Lava Timsina;Glen Mays;Rachel Hogg;Abigail Fagan;Valerie Shapiro;Eric Brown;Kevin Haggerty;David Hawkins;Sabrina Oesterle;David Hawkins;Richard Catalano;Virginia McKay;M. Margaret Dolcini;Lee Hoffer;Tannaz Moin;Jinnan Li;O. Kenrik Duru;Susan Ettner;Norman Turk;Charles Chan;Abigail Keckhafer;Robert Luchs;Sam Ho;Carol Mangione;Peter Selby;Laurie Zawertailo;Nadia Minian;Dolly Balliunas;Rosa Dragonetti;Sarwar Hussain;Julia Lecce;Matthew Chinman;Joie Acosta;Patricia Ebener;Patrick S. Malone;Mary Slaughter;Darcy Freedman;Susan Flocke;Eunlye Lee;Kristen Matlack;Erika Trapl;Punam Ohri-Vachaspati;Morgan Taggart;Elaine Borawski;Amanda Parrish;Jeffrey Harris;Marlana Kohn;Kristen Hammerback;Becca McMillan;Peggy Hannon;Taren Swindle;Geoffrey Curran;Leanne Whiteside-Mansell;Wendy Ward;Cheryl Holt;Sheri Lou Santos;Erin Tagai;Mary Ann Scheirer;Roxanne Carter;Janice Bowie;Muhiuddin Haider;Jimmie Slade;Min Qi Wang;Andrew Masica;Gerald Ogola;Candice Berryman;Kathleen Richter;Rachel Shelton;Lina Jandorf;Deborah Erwin;Khoa Truong;Joyce R. Javier;Dean Coffey;Sheree M. Schrager;Lawrence Palinkas;Jeanne Miranda;Veda Johnson;Valerie Hutcherson;Ruth Ellis;Anna Kharmats;Sandra Marshall-King;Monica LaPradd;Fannie Fonseca-Becker;Deanna Kepka;Julia Bodson;Echo Warner;Brynn Fowler;Elizabeth Shenkman;William Hogan;Folakami Odedina;Jessica De Leon;Monica Hooper;Olveen Carrasquillo;Renee Reams;Myra Hurt;Steven Smith;Jose Szapocznik;David Nelson;Prabir Mandal;James Teufel - 通讯作者:
James Teufel
Cross-Lingual Features for Alzheimer’s Dementia Detection from Speech
通过语音检测阿尔茨海默病的跨语言特征
- DOI:
10.21437/interspeech.2023-1934 - 发表时间:
2023 - 期刊:
- 影响因子:4.8
- 作者:
Thomas Melistas;Lefteris Kapelonis;Nikos Antoniou;Petros Mitseas;Dimitris Sgouropoulos;Theodoros Giannakopoulos;Athanasios Katsamanis;Shrikanth Narayanan - 通讯作者:
Shrikanth Narayanan
Shrikanth Narayanan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shrikanth Narayanan', 18)}}的其他基金
RI Core: Medium: Structured variability in vocal tract articulation dynamics in speech
RI 核心:中:言语中声道发音动态的结构变异
- 批准号:
2311676 - 财政年份:2023
- 资助金额:
$ 119.95万 - 项目类别:
Standard Grant
RI: Small: Speaker-Specific Articulatory Strategies
RI:小:特定于说话者的发音策略
- 批准号:
1908865 - 财政年份:2019
- 资助金额:
$ 119.95万 - 项目类别:
Continuing Grant
Collaborative Research: Computational Behavioral Science: Modeling, Analysis, and Visualization of Social and Communicative Behavior
合作研究:计算行为科学:社交和交流行为的建模、分析和可视化
- 批准号:
1029373 - 财政年份:2010
- 资助金额:
$ 119.95万 - 项目类别:
Continuing Grant
RI: Large: An Integrated Approach to Creating Context Enriched Speech Translation Systems
RI:大型:创建上下文丰富的语音翻译系统的集成方法
- 批准号:
0911009 - 财政年份:2009
- 资助金额:
$ 119.95万 - 项目类别:
Continuing Grant
SGER: Exploring Emotional Vocal Productions Through the Use of Real-Time Magnetic Resonance Imaging
SGER:通过使用实时磁共振成像探索情感声音作品
- 批准号:
0844243 - 财政年份:2008
- 资助金额:
$ 119.95万 - 项目类别:
Standard Grant
Collaborative Research: Modeling Creative and Emotive Improvisation in Theater Performance
合作研究:模拟戏剧表演中的创意和情感即兴创作
- 批准号:
0757414 - 财政年份:2008
- 资助金额:
$ 119.95万 - 项目类别:
Standard Grant
CAREER: Modeling and Optimizing User-Centric Mixed-Initiative Spoken Dialog Systems
职业:建模和优化以用户为中心的混合主动语音对话系统
- 批准号:
0238514 - 财政年份:2003
- 资助金额:
$ 119.95万 - 项目类别:
Continuing Grant
IERI: Collaborative Research: Automating Early Assessment of Academic Standards for Very Young Native and Non-Native Speakers of American English
IERI:合作研究:对美国英语为母语和非母语的幼儿进行学术标准早期评估自动化
- 批准号:
0326228 - 财政年份:2003
- 资助金额:
$ 119.95万 - 项目类别:
Standard Grant
ITR: A User-centric Content-based Approach to Indexing, Query and Retrieval of Music through Signal Processing and Knowledge-based Methods
ITR:一种以用户为中心、基于内容的方法,通过信号处理和基于知识的方法对音乐进行索引、查询和检索
- 批准号:
0219912 - 财政年份:2002
- 资助金额:
$ 119.95万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 119.95万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 119.95万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
$ 119.95万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 119.95万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313149 - 财政年份:2023
- 资助金额:
$ 119.95万 - 项目类别:
Continuing Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312374 - 财政年份:2023
- 资助金额:
$ 119.95万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312373 - 财政年份:2023
- 资助金额:
$ 119.95万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
- 批准号:
2312955 - 财政年份:2023
- 资助金额:
$ 119.95万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
- 批准号:
2313137 - 财政年份:2023
- 资助金额:
$ 119.95万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313150 - 财政年份:2023
- 资助金额:
$ 119.95万 - 项目类别:
Continuing Grant