Petascale Adaptive Mesh Simulations of Milky Way-type Galaxies and Their Environments

银河系及其环境的千万亿次自适应网格模拟

基本信息

  • 批准号:
    1514580
  • 负责人:
  • 金额:
    $ 3.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

This project seeks answers to several pressing questions about the formation and evolution of galaxies. It does so by using the Blue Waters supercomputer to perform a suite of sophisticated supercomputer simulations. The investigators will address such questions as: (i) How did the earliest progenitors of the Milky Way galaxy form, and where can we find their stellar remnants today? (ii) How does the ionizing radiation produced by massive stars escape from galaxies, and how does it affect the properties of neighboring galaxies? (iii) How does the gas that is critical for star formation get from the cosmic web into the central regions of galaxies, and how is gas returned to the intergalactic medium? (iv) How are magnetic fields seeded and amplified in galaxies, and how are they ejected into (or amplified in) the intergalactic medium?The team includes experts in astrophysics as well as in high performance computing, and is united in the use of a sophisticated numerical tool (the Enzo AMR code) that has already demonstrated its performance on Blue Waters. The team will work with observational astronomer collaborators to apply these simulations to the interpretation of measurements of both local and distant galaxies from current astronomical surveys, and to motivate future observations by the Large Synoptic Survey Telescope and the James Webb Space Telescope.The proposed work promises to have significant impact on scientists in training, who will learn to use cutting-edge numerical tools at the largest possible scale. The project will involve undergraduate students at Michigan State University (through MSU?s REU program, which targets women and under-represented minorities) and postdoctoral researchers in the research efforts. Scientific results from this program will be visualized by staff at the National Center for Supercomputing Applications, and will be disseminated to the public via pre-existing collaborations with planetaria and museums, and via the Internet. In addition, these visualizations will be used as part of outreach talks given by members of this project. Finally, the simulation data produced as a result of this project will be used in computational science courses at Michigan State University, where it will be used to train students in scientific visualization and data analysis techniques. The resulting curricular materials will be made available to the public via the World Wide Web.The specific research methods used in this project include the creation of an extensive library of simulated Milky Way-like galaxies and their environments that can be used to explore a wide range of observable astrophysical phenomena. This will be the first study to perform cosmological simulations of galaxy formation and evolution that include self-consistent treatments of radiation transport and/or magnetohydrodynamics for a statistically significant number of galaxies, and to apply these calculations to the interpretation of recent observations relating to the intergalactic and circumgalactic medium, galactic and extragalactic magnetic fields, and high redshift galaxy formation. Furthermore, the simulation data produced during the course of this project, as well as a wide range of data products, will be made publicly available via the nascent National Data Service. This data will be usable by the astrophysical research community, and will enable researchers to address a much broader range of questions regarding galaxy formation and evolution than can be done as a part of this project alone, thus leveraging the computational resources available on Blue Waters.
这个项目寻求关于星系形成和演化的几个紧迫问题的答案。它是通过使用蓝色沃茨超级计算机来执行一套复杂的超级计算机模拟来实现的。研究人员将解决这样的问题:(i)银河系最早的祖先是如何形成的,今天我们在哪里可以找到它们的恒星残骸?(ii)大质量恒星产生的电离辐射是如何从星系中逃逸出来的,它又是如何影响邻近星系的性质的?(iii)对于星星形成至关重要的气体是如何从宇宙网进入星系中心区域的,气体又是如何回到星系际介质的?(iv)磁场是如何在星系中播种和放大的,它们又是如何被喷射到星系际介质中(或在星系际介质中放大)的?该团队包括天体物理学和高性能计算方面的专家,并在使用复杂的数值工具(恩佐AMR代码)方面团结一致,该工具已经在Blue沃茨上展示了其性能。该团队将与观测天文学家合作,将这些模拟应用于解释当前天文调查中的本地和遥远星系的测量结果,并激励大型综合巡天望远镜和詹姆斯韦伯太空望远镜的未来观测。拟议的工作有望对正在培训的科学家产生重大影响,他们将学习在最大范围内使用尖端的数字工具。该项目将涉及密歇根州立大学的本科生(通过密歇根州立大学?的REU计划,目标是妇女和代表性不足的少数民族)和博士后研究人员的研究工作。该计划的科学成果将由国家超级计算应用中心的工作人员可视化,并将通过与天文馆和博物馆的现有合作以及互联网向公众传播。此外,这些可视化将被用作该项目成员进行的外联会谈的一部分。最后,该项目产生的模拟数据将用于密歇根州立大学的计算科学课程,在那里,它将用于培训学生的科学可视化和数据分析技术。由此产生的课程材料将通过万维网向公众提供,该项目使用的具体研究方法包括建立一个广泛的模拟类银河系星系及其环境图书馆,可用于探索广泛的可观测天体物理现象。这将是第一个研究进行宇宙学模拟星系的形成和演化,包括辐射输运和/或磁流体力学的自洽治疗的统计显着数量的星系,并应用这些计算来解释最近的观测有关的星系间和环星系介质,银河系和河外磁场,高红移星系的形成。此外,该项目期间产生的模拟数据以及各种数据产品将通过新成立的国家数据服务处向公众提供。这些数据将可供天体物理研究界使用,并将使研究人员能够解决有关星系形成和演化的更广泛的问题,而不是单独作为该项目的一部分,从而利用Blue沃茨上可用的计算资源。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian O'Shea其他文献

RWD109 Trends in the Global Drug Development Pipeline 2024
《RWD109:2024 年全球药物研发管道趋势》
  • DOI:
    10.1016/j.jval.2025.04.1692
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Brian O'Shea;Allison Carey
  • 通讯作者:
    Allison Carey
A review of Huntington's disease.
亨廷顿舞蹈症综述。

Brian O'Shea的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian O'Shea', 18)}}的其他基金

CC* Compute: The MSU Data Machine - a high-memory, GPU-enabled compute cluster for data-intensive and AI applications
CC* 计算:MSU 数据机 - 一个高内存、支持 GPU 的计算集群,适用于数据密集型和人工智能应用程序
  • 批准号:
    2200792
  • 财政年份:
    2022
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Standard Grant
CC* Networking Infrastructure: A Science DMZ For Quantitative Biology and Precision Agriculture
CC* 网络基础设施:定量生物学和精准农业的科学 DMZ
  • 批准号:
    2018432
  • 财政年份:
    2020
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Standard Grant
REU Site: iCER ACRES: iCER Advanced Computational Research Experience for Students
REU 网站:iCER ACRES:为学生提供 iCER 高级计算研究体验
  • 批准号:
    1949912
  • 财政年份:
    2020
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Standard Grant
Travel grant for LRAC proposal AST20004: The role of low collisionality in compressible, magnetized turbulence
LRAC 提案 AST20004 的旅费补助:低碰撞性在可压缩、磁化湍流中的作用
  • 批准号:
    2031219
  • 财政年份:
    2020
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Standard Grant
Collaborative Research: The Spatially Resolved Circumgalactic Medium of Galaxies
合作研究:空间分辨的环绕星系介质
  • 批准号:
    1908109
  • 财政年份:
    2019
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Standard Grant
Probing the Fossils of the Local Group using Petascale Adaptive Mesh Galaxy Simulations
使用 Petascale 自适应网格星系模拟探测本地群的化石
  • 批准号:
    1810584
  • 财政年份:
    2018
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Standard Grant
Collaborative Research:Framework:Software:NSCI:Enzo for the Exascale Era (Enzo-E)
合作研究:框架:软件:NSCI:Exascale时代的Enzo(Enzo-E)
  • 批准号:
    1835426
  • 财政年份:
    2018
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Standard Grant
Collaborative research: Multiscale physics and feedback in real and simulated circumgalactic gas over cosmic time
合作研究:宇宙时间内真实和模拟的环绕星系气体的多尺度物理和反馈
  • 批准号:
    1514700
  • 财政年份:
    2015
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Continuing Grant
Annual National Science Foundation Astronomy and Astrophysics Postdoctoral Fellows Symposium
年度国家科学基金会天文学和天体物理学博士后研讨会
  • 批准号:
    1612964
  • 财政年份:
    2015
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Software Institute for Abstractions and Methodologies for HPC Simulation Codes on Future Architectures
合作研究:未来架构 HPC 模拟代码抽象和方法学软件研究所
  • 批准号:
    1228667
  • 财政年份:
    2012
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Standard Grant

相似海外基金

CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构​​化网格技术
  • 批准号:
    2348394
  • 财政年份:
    2024
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Standard Grant
Self-Adaptive, Unstructured Mesh, NURBS Enhanced, Polyhedral Schemes, with Hybrid Multicore CPU and Manycore GPU Solution Algorithms, for Nuclear Reac
适用于核反应堆的自适应、非结构化网格、NURBS 增强型、多面体方案,具有混合多核 CPU 和众核 GPU 解决方案算法
  • 批准号:
    2738301
  • 财政年份:
    2022
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Studentship
Long term projection of storm surge inundation using upscaling and adaptive mesh refinement
使用放大和自适应网格细化对风暴潮淹没进行长期预测
  • 批准号:
    19J22429
  • 财政年份:
    2019
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Adaptive Mesh Generation for Complex Geometry
复杂几何体的自适应网格生成
  • 批准号:
    542571-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Adaptive mesh refinement in fluid-structure interaction in three-dimensions
三维流固耦合中的自适应网格细化
  • 批准号:
    2105464
  • 财政年份:
    2018
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Studentship
Parallel High-Order Adaptive Mesh Refinement Finite-Volume Schemes for Multi-Scale Physically-Complex Flows
多尺度物理复杂流的并行高阶自适应网格细化有限体积方案
  • 批准号:
    RGPIN-2014-04583
  • 财政年份:
    2018
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Discovery Grants Program - Individual
Probing the Fossils of the Local Group using Petascale Adaptive Mesh Galaxy Simulations
使用 Petascale 自适应网格星系模拟探测本地群的化石
  • 批准号:
    1810584
  • 财政年份:
    2018
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Standard Grant
Improvements to Unstructured Mesh Finite Volume Methods for CFD: Novel Adaptive Techniques and Improved Robustness
CFD 非结构化网格有限体积方法的改进:新颖的自适应技术和改进的鲁棒性
  • 批准号:
    487154-2015
  • 财政年份:
    2018
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Collaborative Research and Development Grants
Parallel High-Order Adaptive Mesh Refinement Finite-Volume Schemes for Multi-Scale Physically-Complex Flows
多尺度物理复杂流的并行高阶自适应网格细化有限体积方案
  • 批准号:
    RGPIN-2014-04583
  • 财政年份:
    2017
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Discovery Grants Program - Individual
Development of seamless tsunami and storm surge inundation model using adaptive mesh refinement
使用自适应网格细化开发无缝海啸和风暴潮淹没模型
  • 批准号:
    17K06577
  • 财政年份:
    2017
  • 资助金额:
    $ 3.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了