EAPSI: Fluid Flow-Assisted Assembly of Solar Cell Devices
EAPSI:太阳能电池器件的流体流动辅助组装
基本信息
- 批准号:1514641
- 负责人:
- 金额:$ 0.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Fellowship Award
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Organic photovoltaics (OPVs) hold great promise as a solar energy conversion technology which can be easily mass produced and is cheap enough to offer electricity at a price comparable to power generated from traditional coal-fired power plants. Furthermore, the potential for use with flexible substrates opens new opportunities for integration of solar cells with architecture and urban infrastructure. While the advantages of OPVs are attractive, the technology is just emerging from its infancy and has yet to reach power conversion efficiencies exceeding 10%. Most of the critical physics intrinsic to achieving the necessary efficiencies occur in the active layer of a device which is composed of organic polymer semiconductors. This project aims to improve device efficiency by investigating the benefits of controlling the assembly and organization of the active layer at the molecular scale. The research will be conducted under the mentorship of Professor Chih-I Wu at National Taiwan University who has extensive experience with OPVs and similar semiconductor technology and is ideally suited to host this research.Critical processes in the OPV active layer include charge-carrier generation through light absorption and charge-carrier collection due to exciton diffusion, dissociation, and transport to opposite contacts. Excitons?excited, yet still bound pairs of positive and negative charge carriers?in organic materials have relatively low diffusion lengths and mobilities compared to charge transport in typical solid-state photovoltaic semiconductors. As such, the strategy of increasing active layer thickness in order to increase photon interaction with the material leads to lost efficiency due to carrier recombination, often negating the strategy?s intentions. One such solution is to increase effective optical thickness while retaining minimal physical thickness by integration of metallic nanoparticles into the polymer matrix. Solutions such as this, however, are still often deposited by spin-coating, which provides excellent control of active layer thickness, but little control with regard to mesoscale architecture. Recent work at the University of Illinois at Urbana-Champaign has demonstrated enhancement of optoelectronic properties in organic semiconducting polymers due to molecular alignment via microfluidics. This research aims to achieve unprecedented efficiencies through the synthesis of metallic nanoparticle doping with microfluidic directed assembly. This NSF EAPSI award is funded in collaboration with the Ministry of Science and Technology of Taiwan.
有机光催化剂(OPV)作为一种太阳能转换技术具有很大的前景,它可以很容易地大规模生产,而且价格便宜,可以以与传统燃煤电厂相当的价格提供电力。此外,使用柔性基板的潜力为太阳能电池与建筑和城市基础设施的整合提供了新的机会。虽然OPV的优势很有吸引力,但该技术刚刚起步,尚未达到超过10%的功率转换效率。实现必要效率所固有的大多数关键物理特性发生在由有机聚合物半导体组成的器件的有源层中。该项目旨在通过研究在分子尺度上控制活性层的组装和组织的益处来提高器件效率。本研究将由国立台湾大学吴志毅教授指导,吴教授在OPV和类似半导体技术方面拥有丰富的经验,非常适合主持本研究。OPV有源层的关键过程包括通过光吸收产生电荷载流子,以及由于激子扩散、解离和传输到相对接触而收集电荷载流子。激子?兴奋,但仍然结合对积极和消极的电荷载体?在有机材料中,与典型的固态光伏半导体中的电荷传输相比,具有相对低的扩散长度和迁移率。因此,为了增加光子与材料的相互作用而增加有源层厚度的策略会由于载流子复合而导致效率损失,通常会否定该策略。的意图。一种这样的解决方案是通过将金属纳米颗粒整合到聚合物基质中来增加有效光学厚度,同时保持最小的物理厚度。然而,诸如此类的解决方案仍然经常通过旋涂来沉积,这提供了对活性层厚度的优异控制,但对中尺度结构几乎没有控制。伊利诺伊大学厄巴纳-香槟分校最近的工作表明,由于微流体的分子排列,有机半导体聚合物的光电性能得到了增强。本研究旨在通过微流控定向组装合成掺杂金属纳米颗粒来实现前所未有的效率。这个NSF EAPSI奖是与台湾科技部合作资助的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lawrence Valverde其他文献
Lawrence Valverde的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
随机进程代数模型的Fluid逼近问题研究
- 批准号:61472343
- 批准年份:2014
- 资助金额:75.0 万元
- 项目类别:面上项目
ICF中电子/离子输运的PIC-FLUID混合模拟方法研究
- 批准号:11275269
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Understanding Dike Propagation Through Comparison of High-fidelity Coupled Fracture and Fluid Flow Models and Field Observations
通过比较高保真耦合裂缝和流体流动模型以及现场观测来了解堤坝的扩展
- 批准号:
2333837 - 财政年份:2024
- 资助金额:
$ 0.5万 - 项目类别:
Continuing Grant
ERI: Unraveling Multi-Phase Ink Shear-Thinning Flow Mechanism in Direct Ink Writing Process: Computational Fluid Dynamics Simulation and In-Situ Experimental Verification
ERI:揭示直接墨水书写过程中的多相墨水剪切稀化流动机制:计算流体动力学模拟和原位实验验证
- 批准号:
2347497 - 财政年份:2024
- 资助金额:
$ 0.5万 - 项目类别:
Standard Grant
How does water move through the subducting slab? Slab-scale fluid pathways and deformation-fluid flow feedbacks at eclogite facies
水如何穿过俯冲板片?
- 批准号:
2317586 - 财政年份:2024
- 资助金额:
$ 0.5万 - 项目类别:
Standard Grant
Quantifying Fluid Flow in Stressed & Fractured Carbonates
量化受压流体流动
- 批准号:
NE/Y003322/2 - 财政年份:2024
- 资助金额:
$ 0.5万 - 项目类别:
Research Grant
Water in garnet as a record of fluid flow during metamorphism
石榴石中的水作为变质过程中流体流动的记录
- 批准号:
2320100 - 财政年份:2023
- 资助金额:
$ 0.5万 - 项目类别:
Standard Grant
Exploiting fully coupled fluid-structure interaction: optimal wing heterogeneity and efficient flow state estimation in flapping flight
利用完全耦合的流固相互作用:扑翼飞行中的最佳机翼异质性和有效的流动状态估计
- 批准号:
2320875 - 财政年份:2023
- 资助金额:
$ 0.5万 - 项目类别:
Standard Grant
CAREER: Analysis of uncertainty, long-time statistics and singularity formation in fluid flow models
职业:流体流动模型中的不确定性、长期统计数据和奇点形成分析
- 批准号:
2239325 - 财政年份:2023
- 资助金额:
$ 0.5万 - 项目类别:
Continuing Grant
High shear fluid flow driving carbon foundry for advanced manufacturing
高剪切流体流动驱动碳铸造厂进行先进制造
- 批准号:
DP230100479 - 财政年份:2023
- 资助金额:
$ 0.5万 - 项目类别:
Discovery Projects
Fundamental understanding of turbulent flow over fluid-saturated complex porous media
对流体饱和复杂多孔介质上湍流的基本理解
- 批准号:
EP/W03350X/1 - 财政年份:2023
- 资助金额:
$ 0.5万 - 项目类别:
Research Grant
Fluid flow in the uppermost part of the incoming plate seaward of the trench: Regional variations and influence on processes around the plate interface
进入海沟的板块最上部的流体流动:区域变化及其对板块界面周围过程的影响
- 批准号:
23H01268 - 财政年份:2023
- 资助金额:
$ 0.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)