Exploiting fully coupled fluid-structure interaction: optimal wing heterogeneity and efficient flow state estimation in flapping flight

利用完全耦合的流固相互作用:扑翼飞行中的最佳机翼异质性和有效的流动状态估计

基本信息

  • 批准号:
    2320875
  • 负责人:
  • 金额:
    $ 29.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Insects can fly up to 35 mph, execute dizzying turns and maneuvers, and migrate over ten thousand miles amid incredibly large flow disturbances. These feats have driven the design of bio-inspired robotic vehicles, with potential applications in disaster recovery, efficient and environmentally friendly air package delivery, and improved safety in commercial flight. To realize these applications, robotic flyers must become more maneuverable and robust to disturbances. The research has two goals or questions to build towards these next-generation aerial vehicles: (i) Current robotic wing designs borrow inspiration from natural flyers, but the aerodynamic utility of features such as veins, reinforced leading edges, and asymmetric wing shapes remain unknown. If these properties were optimized for aerodynamic performance, what structurally heterogeneous features would arise and how similar or different are these from those found in insects? (ii) Next-generation aerial vehicles require improved sensing of flow disturbances. Can the passive wing deformations from flight be leveraged to estimate the surrounding flow behavior, and could such an estimation framework yield hypotheses about whether insects possess similar estimation paradigms? This project will use adjoint-based optimization to determine optimal wing heterogeneity in canonical flapping flyers. This optimization will use high-fidelity, fully coupled fluid-structure interaction simulations. Where possible, mechanisms that clarify how the optimized properties yield beneficial changes to key flow structures will be drawn. Optimal results will be compared to properties of biological flyers to assess whether they benefit aerodynamic performance (without assuming so beforehand). A state estimation paradigm that leverages neural-network architectures will be developed to assess whether accurate flow state information can be obtained from wing deformations. The intellectual merit of this work lies in the identification of aerodynamically optimal wing properties and the associated fluid-structure mechanisms that explain how these properties benefit aerodynamic performance, as well as the development of plausible state estimation paradigms from passive wing deformations. The technical broader impacts are the development of more maneuverable and disturbance-robust micro-air vehicles, as well as new hypotheses about the aerodynamics of insect flight. Educationally, this program will be integrated into an undergraduate research internship with students from under-served populations via the McNair Scholars Program, as well as a collaboration with the UIUC Chicago Science & Engineering Program. In this latter collaboration, students from Minorities in Aerospace, an organization co-founded by the PI, will teach K-12 students from under-represented groups and their families the coding, control ideas, and implementation of a basic drone flight sequence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
昆虫可以以每小时35英里的速度飞行,执行令人眼花缭乱的转弯和机动,并在令人难以置信的大流量干扰中迁移一万英里。这些壮举推动了仿生机器人车辆的设计,这些车辆在灾难恢复、高效环保的航空包裹递送以及提高商业飞行安全性方面具有潜在的应用。为了实现这些应用,机器人飞行器必须变得更加灵活和强大的干扰。该研究有两个目标或问题要建立这些下一代飞行器:(i)目前的机器人机翼设计从自然飞行器中汲取灵感,但静脉,加强前缘和不对称机翼形状等特征的空气动力学效用仍然未知。如果这些特性被优化为空气动力学性能,那么会出现什么样的结构异质性特征,这些特征与昆虫中发现的特征有多少相似或不同?(ii)下一代飞行器需要改进的气流扰动感测。从飞行被动翼变形可以被利用来估计周围的流动行为,这样的估计框架产生的假设昆虫是否具有类似的估计范式?本计画将使用伴随式最佳化来决定典型扑翼飞行器的最佳机翼异质性。这种优化将使用高保真度,完全耦合的流体-结构相互作用模拟。在可能的情况下,将绘制阐明优化特性如何对关键流动结构产生有益变化的机制。最佳结果将与生物飞行器的特性进行比较,以评估它们是否有利于空气动力学性能(事先没有假设)。将开发一种利用神经网络结构的状态估计范例,以评估是否可以从机翼变形中获得准确的流状态信息。这项工作的智力价值在于确定空气动力学最佳的机翼特性和相关的流体结构机制,解释这些特性如何有利于空气动力学性能,以及从被动机翼变形的合理状态估计范例的发展。更广泛的技术影响是发展更稳定和抗干扰的微型飞行器,以及关于昆虫飞行的空气动力学的新假设。在教育方面,该计划将通过麦克奈尔学者计划,以及与UIUC芝加哥科学工程计划的合作,与来自服务不足人群的学生进行本科研究实习。在后一项合作中,来自PI共同创立的组织“航空航天少数民族”的学生将向来自代表性不足的群体及其家庭的K-12学生教授编码、控制思想和基本无人机飞行序列的实现。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andres Goza其他文献

Thermodynamic modeling of bulk ternary alloy crystal growth: Comparison of experiments and theory for GaInSb alloys
大块三元合金晶体生长的热力学建模:GaInSb 合金的实验与理论比较
  • DOI:
    10.1016/j.jcrysgro.2011.09.056
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andres Goza;Stephanie E. Tritchler;D. Bliss;B. Houchens
  • 通讯作者:
    B. Houchens
Numerical Methods for Fluid-Structure Interaction, and their Application to Flag Flapping
  • DOI:
    10.7907/z95t3hpb
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andres Goza
  • 通讯作者:
    Andres Goza
Global modes and nonlinear analysis of inverted-flag flapping
倒旗飘动的全局模态和非线性分析
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Andres Goza;T. Colonius;J. Sader
  • 通讯作者:
    J. Sader
Design and Analysis of Phononic Material for Passive Flow Control
用于无源流动控制的声子材料的设计与分析
  • DOI:
    10.2514/6.2022-3330
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Park;G. Hristov;S. Balasubramanian;Andres Goza;Phillip J. Ansell;K. Matlack
  • 通讯作者:
    K. Matlack

Andres Goza的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andres Goza', 18)}}的其他基金

Bioinspired, Adaptive, and Self-Deploying Flaps for Distributed Aerodynamic Flow Control
用于分布式气动流量控制的仿生、自适应和自展开襟翼
  • 批准号:
    2029028
  • 财政年份:
    2020
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Non-Reciprocally-Coupled Load-Modulation Platform for Next-Generation High-Power Magnetic-Less Fully-Directional Radio Front Ends
职业:用于下一代高功率无磁全向无线电前端的非互易耦合负载调制平台
  • 批准号:
    2239207
  • 财政年份:
    2023
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
Fully Coupled Modeling of Dynamic Rupture, Wedge Plasticity, and Tsunami for Great Earthquakes in the Japan Trench
日本海沟大地震的动态破裂、楔塑性和海啸的全耦合建模
  • 批准号:
    2244703
  • 财政年份:
    2023
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Research on the creation and evaluation of high-performance scalable fully coupled Ising machine LSI
高性能可扩展全耦合伊辛机LSI创建与评估研究
  • 批准号:
    22H01559
  • 财政年份:
    2022
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
EAR-PF: Dynamic flow channeling through complex fracture networks under multi-frequency oscillatory flow conditions: A fully-coupled hydromechanical approach
EAR-PF:多频振荡流条件下通过复杂裂缝网络的动态流道:全耦合流体力学方法
  • 批准号:
    2204543
  • 财政年份:
    2022
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Fellowship Award
Collaborative Research: Noncovalently Bound Molecular Trimers: High-dimensional and Fully Coupled Quantum Calculations of their Vibrational Levels
合作研究:非共价键合分子三聚体:其振动水平的高维和完全耦合量子计算
  • 批准号:
    2054604
  • 财政年份:
    2021
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Collaborative Research/GOALI: Fully Continuous Downstream Processing Enabled by Coupled Precipitation-Filtration Capture Operations
协作研究/GOALI:通过耦合沉淀-过滤捕获操作实现完全连续的下游处理
  • 批准号:
    2032261
  • 财政年份:
    2021
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Towards fully reconstituting mammalian transcription in a test tube
在试管中完全重建哺乳动物转录
  • 批准号:
    10242352
  • 财政年份:
    2021
  • 资助金额:
    $ 29.95万
  • 项目类别:
Collaborative Research: Noncovalently Bound Molecular Trimers: High-dimensional and Fully Coupled Quantum Calculations of their Vibrational Levels
合作研究:非共价键合分子三聚体:其振动水平的高维和完全耦合量子计算
  • 批准号:
    2054616
  • 财政年份:
    2021
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Development of a Fully-Implantable Ventricular Assist Device for Neonates and Children with Heart Failure - with Magnetic Levitation to Improve Hemocompatibility
开发用于新生儿和心力衰竭儿童的完全植入式心室辅助装置 - 通过磁悬浮改善血液相容性
  • 批准号:
    10418720
  • 财政年份:
    2020
  • 资助金额:
    $ 29.95万
  • 项目类别:
Development of a Fully-Implantable Ventricular Assist Device for Neonates and Children with Heart Failure - with Magnetic Levitation to Improve Hemocompatibility
开发用于新生儿和心力衰竭儿童的完全植入式心室辅助装置 - 通过磁悬浮改善血液相容性
  • 批准号:
    10029559
  • 财政年份:
    2020
  • 资助金额:
    $ 29.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了