EAPSI:Investigating Roles of Putative Phosphonatases from the Extreme Bacterium Synechococcus

EAPSI:研究来自极端细菌聚球藻的假定磷酸酶的作用

基本信息

  • 批准号:
    1514923
  • 负责人:
  • 金额:
    $ 0.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Fellowship Award
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

Phosphorus is the eleventh most abundant element on the planet, and essential to life. Phosphate esters, compounds that contain a C-O-P bond, make up the backbones of DNA and RNA and are also a component of the molecular energy molecule ATP. Thus, phosphate esters have been well studied for many decades. Less thoroughly examined are organophosphanates, compounds which contain a C-P bond. Organophosphonates are thought to have predominated on primitive Earth, when oxygen concentration was likely lower than today. More recently, organophosphonates have been noted for their importance as commercial products, from antibiotics to fungicides, and in providing nutrients for organisms living in extreme environments. Additionally, organophosphonates have recently been recognized as an important component of the marine phosphorus cycle, accounting for up to 25% of oceanic dissolved organic phosphate. Understanding organophosphonate breakdown and utilization is thus important for understanding environmental phosphorus cycling. Work will be conducted with Professor Taichi Takasuka, at Hokkaido University, to make and test the function of enzymes proposed to be able to break down these compounds. It is possible that they have the ability to break down organophosphonates in a way that has never been reported before. The most well known microbial pathway for organophosphonate catabolism is that of C-P lyase, a multi-subunit enzyme complex that, in all bacteria studied, is under control of a single, phosphate-activated promoter. C-P lyase?s mechanism has recently been proposed, along with mechanisms for alternative organophosphonate catabolism. Of these alternative pathways, most have been at least partially characterized. However, three recent publications present evidence for as-yet-uncharacterized catabolic pathways of phosphonate degradation in Campylobacter spp., Heliobacter spp., and Synechococcus spp. Specifically, in Synechoccus spp. isolated from Yellowstone National Park, gene products have been implicated in organophosphonate catabolism, but neither verified nor characterized. These putative phosphonatases will be expressed using a wheat germ embryo-based cell-free protein production system, and biochemically characterized, using quantitative mass spectrometry (MS). The putative phosphonatases (phnases) implicated in phosphonate catabolism by this study and their metabolic products may reveal novel mechanisms of breakdown of this important subset of phosphate containing compounds. This NSF EAPSI award is funded in collaboration with the Japan Society for the Promotion of Science.
磷是地球上第十一种最丰富的元素,也是生命所必需的。磷酸酯是一种含有C-O-P键的化合物,构成了DNA和RNA的骨架,也是分子能量分子ATP的组成部分。因此,对磷酸酯的研究已经有几十年的历史了。研究较少的是有机磷酸盐,这是一种含有C-P键的化合物。有机磷酸盐被认为在原始地球上占主导地位,当时的氧气浓度可能比今天低。最近,人们注意到有机磷酸盐作为商业产品的重要性,从抗生素到杀菌剂,以及在为生活在极端环境中的有机体提供营养方面。此外,有机磷酸盐最近被认为是海洋磷循环的重要组成部分,占海洋溶解有机磷的25%。因此,了解有机磷的分解和利用对于理解环境中的磷循环是很重要的。将与北海道大学的Taichi Takasuka教授合作,制造并测试能够分解这些化合物的酶的功能。它们有可能有能力以一种以前从未报道过的方式分解有机磷酸盐。最广为人知的有机磷分解代谢的微生物途径是C-P裂解酶,这是一种多亚单位酶复合体,在所有研究的细菌中,它都受单一的磷酸激活启动子的控制。C-P裂解酶?S机制是新近提出的,同时也是有机磷分解代谢的替代机制。在这些可供选择的途径中,大多数至少已经部分确定了特征。然而,最近的三篇论文提供了在弯曲杆菌、螺旋杆菌和聚球藻中尚不清楚的磷酸盐降解分解代谢途径的证据。具体地说,在聚球藻属中。从黄石国家公园分离出来的基因产物与有机磷分解代谢有关,但既没有得到证实,也没有确定其特征。这些假定的磷酸酶将使用基于小麦胚芽的无细胞蛋白生产系统来表达,并使用定量质谱学(MS)进行生化表征。本研究推测的与磷酸分解代谢有关的磷酸酶(Phnase)及其代谢产物可能揭示了这一重要的含磷化合物分解的新机制。该NSF EAPSI奖是与日本科学促进会合作资助的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Minkoff其他文献

Mapping the Epitope Interactions of Trastuzumab Via Plasma Induced Modification of Biomolecules (PLIMB)
  • DOI:
    10.1016/j.bpj.2020.11.924
  • 发表时间:
    2021-02-12
  • 期刊:
  • 影响因子:
  • 作者:
    Daniel Benjamin;Faraz A. Choudhury;Benjamin Minkoff;Claire Bramwell;St John Skilton;Michael R. Sussman
  • 通讯作者:
    Michael R. Sussman
Mapping the Interactions of PKNB with Small Molecule Inhibitors using Plasma Induced Modifications of Biomolecules (PLIMB)
  • DOI:
    10.1016/j.bpj.2020.11.1400
  • 发表时间:
    2021-02-12
  • 期刊:
  • 影响因子:
  • 作者:
    Faraz A. Choudhury;Nathan Wlodarchak;Benjamin Minkoff;Daniel Benjamin;Claire Bramwell;Rob Striker;Michael R. Sussman
  • 通讯作者:
    Michael R. Sussman
Plasma Induced Modification of Biomolecules (PLIMB) for Epitope Mapping
  • DOI:
    10.1016/j.bpj.2019.11.2063
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Daniel Benjamin;Faraz A. Choudhury;Benjamin Minkoff;Claire Bramwell;St John Skilton;J. Leon Shohet;Michael R. Sussman
  • 通讯作者:
    Michael R. Sussman

Benjamin Minkoff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Minkoff', 18)}}的其他基金

I-Corps: Plasma-based Protein Footprinting
I-Corps:基于血浆的蛋白质足迹
  • 批准号:
    1801928
  • 财政年份:
    2018
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Standard Grant

相似海外基金

Investigating the non-canonical roles of DEPDC5 in brain development and diseases by in vivo functional genomics
通过体内功能基因组学研究 DEPDC5 在大脑发育和疾病中的非典型作用
  • 批准号:
    487244
  • 财政年份:
    2023
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Operating Grants
Investigating the roles of oncogenic extrachromosomal circular DNAs in cancer
研究致癌染色体外环状 DNA 在癌症中的作用
  • 批准号:
    10718423
  • 财政年份:
    2023
  • 资助金额:
    $ 0.51万
  • 项目类别:
MEIAD: Investigating roles for Meiosis Associated Degradation during meiotic recombination in plants
MEIAD:研究植物减数分裂重组过程中减数分裂相关降解的作用
  • 批准号:
    BB/Y002512/1
  • 财政年份:
    2023
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Research Grant
Investigating the Regulatory Roles of Histone Chaperones in Cellular Plasticity
研究组蛋白伴侣在细胞可塑性中的调节作用
  • 批准号:
    10714076
  • 财政年份:
    2023
  • 资助金额:
    $ 0.51万
  • 项目类别:
Investigating the Novel Roles of FFAR4 in Foam Cell Formation and Atherosclerosis
研究 FFAR4 在泡沫细胞形成和动脉粥样硬化中的新作用
  • 批准号:
    10676531
  • 财政年份:
    2023
  • 资助金额:
    $ 0.51万
  • 项目类别:
Investigating the Roles of ADARs and A-to-I RNA Editing in Germline RNA Regulation
研究 ADAR 和 A-to-I RNA 编辑在种系 RNA 调控中的作用
  • 批准号:
    10537194
  • 财政年份:
    2022
  • 资助金额:
    $ 0.51万
  • 项目类别:
Investigating the functional roles of CTSH and PGM1 in beta-cells during autoimmune diabetes development
研究 CTSH 和 PGM1 在自身免疫性糖尿病发展过程中在 β 细胞中的功能作用
  • 批准号:
    10559637
  • 财政年份:
    2022
  • 资助金额:
    $ 0.51万
  • 项目类别:
Investigating the roles of YWHAB in breast cancer
研究 YWHAB 在乳腺癌中的作用
  • 批准号:
    572218-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 0.51万
  • 项目类别:
    University Undergraduate Student Research Awards
Investigating the roles of dark microglia at synapses and the vasculature during postnatal development, in health and following maternal immune activation
研究产后发育、健康和母体免疫激活期间暗小胶质细胞在突触和脉管系统中的作用
  • 批准号:
    486031
  • 财政年份:
    2022
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Studentship Programs
Investigating the functional roles of CTSH and PGM1 in beta-cells during autoimmune diabetes development
研究 CTSH 和 PGM1 在自身免疫性糖尿病发展过程中在 β 细胞中的功能作用
  • 批准号:
    10351102
  • 财政年份:
    2022
  • 资助金额:
    $ 0.51万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了