CRCNS: Collaborative Research: Probabilistic Representation of Dynamic Action and Superposition in Spinal Cord Neural Populations - Advancing Theory and Experiment

CRCNS:协作研究:脊髓神经群体动态作用和叠加的概率表示 - 推进理论和实验

基本信息

  • 批准号:
    1515140
  • 负责人:
  • 金额:
    $ 30.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

The operation of the brain is not 'clockwork', but rather probabilistic. The project will provide proof of concept data for a new theoretical and experimental framework that utilizes this feature, by using stochastic dynamic operators (SDOs). These new methods have potential to significantly improve predictions of dynamics from recordings of brain function, which in turn would have significant technological and medical impacts in areas including disease process diagnosis, disease control using stimulation, robot prostheses and brain machine interface designs, neural prostheses, and neurally-driven augmentation or replacement. The project brings together a collaboration between an applied mathematician/neurologist and a comparative neurophysiologist, and will provide interdisciplinary graduate and postdoctoral training at the cutting edge of neuroscience, stochastic methods and control. Increasing sophistication of brain recording technology is not fully matched by an equally sophisticated mathematical approach that permits modeling and direct prediction of the relation between behavior and the activity of neural populations. For motor systems, the primary goal is control of dynamics in the environment. The methods under investigation avoid the usual neural separation into sensory and motor effects. They treat neural activity as representing probabilistic alterations of unfolding dynamics. More specifically, the SDO framework considers neural activity as causing a modification of the overall system dynamics, so that the resulting dynamics (including movement, compliance, and oscillatory behavior) achieve a desired result. This allows principled engineering solutions and use of 'big' neural activity to predict dynamics. The proof of concept proposal will test model prediction responses during trajectory formation and perturbation in reflex behavior, prediction of real-time effect of single spikes, and combined effect of multiple neurons/populations. On proof of concept project completion: (1) The SDO framework will be compared with classical techniques using novel data sets; (2) Basic feasibility of real-time robot control from spinal neural activity in a model system will be assessed. Together, these data will all add significantly to neural analysis, neurotechnology and understanding of the novel methods in relation to others.
大脑的运作不是“时钟式的”,而是概率式的。该项目将通过使用随机动态算子(sdo),为利用这一特征的新理论和实验框架提供概念数据验证。这些新方法有可能显著改善脑功能记录对动态的预测,这反过来将在疾病过程诊断、使用刺激的疾病控制、机器人假肢和脑机接口设计、神经假肢和神经驱动的增强或替代等领域产生重大的技术和医学影响。该项目汇集了应用数学家/神经学家和比较神经生理学家之间的合作,并将在神经科学,随机方法和控制的前沿提供跨学科的研究生和博士后培训。越来越复杂的大脑记录技术并没有完全匹配同样复杂的数学方法,允许建模和直接预测行为和神经群活动之间的关系。对于运动系统,主要目标是控制环境中的动力学。所研究的方法避免了通常的神经分离为感觉和运动效应。他们把神经活动看作是展开动力学的概率变化。更具体地说,SDO框架将神经活动视为引起对整个系统动态的修改,以便产生的动态(包括移动、遵从性和振荡行为)达到期望的结果。这允许原则性的工程解决方案和使用“大”神经活动来预测动态。概念验证提案将测试模型在轨迹形成和反射行为扰动期间的预测响应,预测单个峰值的实时效应,以及多个神经元/群体的联合效应。关于概念验证项目的完成:(1)SDO框架将与使用新数据集的经典技术进行比较;(2)在模型系统中通过脊髓神经活动实时控制机器人的基本可行性将被评估。总之,这些数据将大大增加神经分析,神经技术和理解与其他新方法的关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Giszter其他文献

Simon Giszter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Giszter', 18)}}的其他基金

Collaborative Research: Neural and mechanical bases of motor primitives in voluntary frog behavior
合作研究:青蛙自愿行为中运动原语的神经和机械基础
  • 批准号:
    0827684
  • 财政年份:
    2008
  • 资助金额:
    $ 30.44万
  • 项目类别:
    Continuing Grant

相似海外基金

CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
  • 批准号:
    2309022
  • 财政年份:
    2024
  • 资助金额:
    $ 30.44万
  • 项目类别:
    Standard Grant
CRCNS US-Spain Research Proposal: Collaborative Research: Tracking and modeling the neurobiology of multilingual speech recognition
CRCNS 美国-西班牙研究提案:合作研究:跟踪和建模多语言语音识别的神经生物学
  • 批准号:
    2207770
  • 财政年份:
    2022
  • 资助金额:
    $ 30.44万
  • 项目类别:
    Continuing Grant
2022 Collaborative Research in Computational Neuroscience (CRCNS) Principal Investigators Meeting
2022年计算神经科学合作研究(CRCNS)首席研究员会议
  • 批准号:
    2236749
  • 财政年份:
    2022
  • 资助金额:
    $ 30.44万
  • 项目类别:
    Standard Grant
CRCNS US-Spain Research Proposal: Collaborative Research: Tracking and modeling the neurobiology of multilingual speech recognition
CRCNS 美国-西班牙研究提案:合作研究:跟踪和建模多语言语音识别的神经生物学
  • 批准号:
    2207747
  • 财政年份:
    2022
  • 资助金额:
    $ 30.44万
  • 项目类别:
    Standard Grant
Collaborative Research: CRCNS Research Proposal: Adaptive Decision Rules in Dynamic Environments
合作研究:CRCNS 研究提案:动态环境中的自适应决策规则
  • 批准号:
    2207727
  • 财政年份:
    2022
  • 资助金额:
    $ 30.44万
  • 项目类别:
    Standard Grant
Collaborative Research: CRCNS Research Proposal: Adaptive Decision Rules in Dynamic Environments
合作研究:CRCNS 研究提案:动态环境中的自适应决策规则
  • 批准号:
    2207700
  • 财政年份:
    2022
  • 资助金额:
    $ 30.44万
  • 项目类别:
    Standard Grant
CRCNS Research Proposal: Collaborative Research: US-German Collaboration toward a biophysically principled network model of transcranial magnetic stimulation (TMS)
CRCNS 研究提案:合作研究:美德合作建立经颅磁刺激 (TMS) 的生物物理原理网络模型
  • 批准号:
    10610594
  • 财政年份:
    2022
  • 资助金额:
    $ 30.44万
  • 项目类别:
Collaborative Research: CRCNS Research Proposal: Adaptive Decision Rules in Dynamic Environments
合作研究:CRCNS 研究提案:动态环境中的自适应决策规则
  • 批准号:
    2207647
  • 财政年份:
    2022
  • 资助金额:
    $ 30.44万
  • 项目类别:
    Standard Grant
CRCNS Research Proposal: Collaborative Research: US-German Collaboration toward a biophysically principled network model of transcranial magnetic stimulation (TMS)
CRCNS 研究提案:合作研究:美德合作建立经颅磁刺激 (TMS) 的生物物理原理网络模型
  • 批准号:
    10708986
  • 财政年份:
    2022
  • 资助金额:
    $ 30.44万
  • 项目类别:
CRCNS Research Project: Collaborative Research: Experimental, Numerical, and Robotic Study of the Role of Dynamic Load Sensing in Legged Locomotion
CRCNS 研究项目:协作研究:动态负载传感在腿式运动中的作用的实验、数值和机器人研究
  • 批准号:
    2113028
  • 财政年份:
    2021
  • 资助金额:
    $ 30.44万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了