EAPSI: Design of Ultra-thin Nanostructured Silicon Solar Cells: Coupled Optical and Electrical Modeling
EAPSI:超薄纳米结构硅太阳能电池的设计:耦合光学和电学建模
基本信息
- 批准号:1515247
- 负责人:
- 金额:$ 0.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Fellowship Award
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ultra-thin silicon solar cells are promising candidates for future generations of photovoltaic devices due to decreased material cost and higher performance. However, poor light absorption in silicon necessitates the use of light-enhancement methods. The Solar Power Lab at Arizona State University has previously developed a repeatable, large-area nanostructuring process for increasing light absorption in thin silicon substrates. What is presently needed is predictive theoretical modeling to guide development of a device fabrication process that experimentally investigates the suitability of nanostructured silicon in high-efficiency solar cells. The proposed project is to work with Dr. Stephen Bremner, a noted expert in design and fabrication of third generation silicon solar cells, at the University of New South Wales (UNSW) in Sydney, Australia to create and optimize coupled optical and electrical models of ultra-thin nanostructured silicon solar cells. The project will utilize the empirically calibrated optical models of nanostructured substrates using finite difference time domain (FDTD) numerical methods to obtain the optical generation rate in the substrate. The optical generation rate will then be input into device models based on thick silicon solar cells to evaluate optical gains when conventional microtexturing methods are replaced with nanotexturing. Then, the project will analyze alternative solar cells designs based on ultra-thin silicon solar cells where conventional microtexturing is no longer a viable option due to large feature size compared to the thickness of the substrate. Finally, the project will analyze and iteratively refine the coupled optical and electrical model and identify potential designs for experimental verification in the lab. This NSF EAPSI award is funded in collaboration with the Australian Academy of Science. This NSF EAPSI award is funded in collaboration with the Australian Academy of Science.
超薄硅太阳能电池由于降低了材料成本和更高的性能而成为未来几代光伏器件的有希望的候选者。然而,硅中的光吸收差,需要使用光增强方法。亚利桑那州州立大学的太阳能实验室先前开发了一种可重复的大面积纳米结构化工艺,用于增加薄硅衬底的光吸收。目前需要的是预测性理论建模,以指导器件制造工艺的开发,该工艺实验性地研究纳米结构硅在高效太阳能电池中的适用性。拟议的项目是与澳大利亚悉尼新南威尔士大学(UNSW)第三代硅太阳能电池设计和制造方面的著名专家Stephen Bremner博士合作,创建和优化超薄纳米结构硅太阳能电池的耦合光学和电气模型。该项目将利用经验校准的纳米结构基板的光学模型,使用有限差分时域(FDTD)数值方法,以获得在基板的光产生率。然后将光产生率输入到基于厚硅太阳能电池的器件模型中,以评估当传统的微织构方法被纳米织构取代时的光增益。然后,该项目将分析基于超薄硅太阳能电池的替代太阳能电池设计,其中传统的微纹理不再是可行的选择,因为与基板厚度相比,特征尺寸较大。最后,该项目将分析和反复完善耦合的光学和电学模型,并确定潜在的设计,以在实验室进行实验验证。这个NSF EAPSI奖是与澳大利亚科学院合作资助的。这个NSF EAPSI奖是与澳大利亚科学院合作资助的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natasa Vulic其他文献
Spatiotemporal upscaling errors of building stock clustering for energy demand simulation
- DOI:
10.1016/j.enbuild.2022.111844 - 发表时间:
2022-03-01 - 期刊:
- 影响因子:
- 作者:
Sven Eggimann;Natasa Vulic;Martin Rüdisüli;Robin Mutschler;Kristina Orehounig;Matthias Sulzer - 通讯作者:
Matthias Sulzer
Dynamic grid emission factors and export limits reduce emission abatement and cost benefits of building PV systems
- DOI:
10.1016/j.enbuild.2024.114772 - 发表时间:
2024-11-15 - 期刊:
- 影响因子:
- 作者:
Linda Brodnicke;Alissa Ganter;Sven Tröber;Giovanni Sansavini;Natasa Vulic - 通讯作者:
Natasa Vulic
Natasa Vulic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
在噪声和约束条件下的unitary design的理论研究
- 批准号:12147123
- 批准年份:2021
- 资助金额:18 万元
- 项目类别:专项基金项目
相似海外基金
FuSe-TG: Electro-Thermal Co-Design Center for Ultra-Wide Bandgap Semiconductor Devices
FuSe-TG:超宽带隙半导体器件电热协同设计中心
- 批准号:
2234479 - 财政年份:2023
- 资助金额:
$ 0.51万 - 项目类别:
Standard Grant
Establishment of fire spalling control design method using natural fiber for ultra high strength fiber reinforced concrete
超高强纤维混凝土天然纤维火灾剥落控制设计方法的建立
- 批准号:
23K03984 - 财政年份:2023
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical Design and Rapid Development of Ultra-high-performance Millimeter-wave Passive Devices for 6G Wireless
6G无线超高性能毫米波无源器件的理论设计和快速开发
- 批准号:
23K03963 - 财政年份:2023
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Co-design and AI for Innovation in Ultra-sonic Transducers for Underwater Sonar
水下声纳超声波换能器创新的协同设计和人工智能
- 批准号:
2744677 - 财政年份:2022
- 资助金额:
$ 0.51万 - 项目类别:
Studentship
Radio Frequency Coil Design for Ultra High Field Magnetic Resonance Imaging
超高场磁共振成像射频线圈设计
- 批准号:
RGPIN-2019-04743 - 财政年份:2022
- 资助金额:
$ 0.51万 - 项目类别:
Discovery Grants Program - Individual
HAINEM: Hardware Software Co-Design Solutions for Ultra-Efficient Artificial Intelligence and Neuromorphic Systems by Using Emerging Memory Technologies
HAINEM:利用新兴内存技术实现超高效人工智能和神经形态系统的硬件软件协同设计解决方案
- 批准号:
DGECR-2022-00101 - 财政年份:2022
- 资助金额:
$ 0.51万 - 项目类别:
Discovery Launch Supplement
HAINEM: Hardware Software Co-Design Solutions for Ultra-Efficient Artificial Intelligence and Neuromorphic Systems by Using Emerging Memory Technologies
HAINEM:利用新兴内存技术实现超高效人工智能和神经形态系统的硬件软件协同设计解决方案
- 批准号:
RGPIN-2022-04489 - 财政年份:2022
- 资助金额:
$ 0.51万 - 项目类别:
Discovery Grants Program - Individual
Model design for analyzing ultra-low framerate surveillance videos
超低帧率监控视频分析模型设计
- 批准号:
RGPIN-2018-05401 - 财政年份:2022
- 资助金额:
$ 0.51万 - 项目类别:
Discovery Grants Program - Individual
Design of ultra-high-speed observer-based micro positioning systems
基于观测器的超高速微定位系统设计
- 批准号:
RGPIN-2018-04167 - 财政年份:2022
- 资助金额:
$ 0.51万 - 项目类别:
Discovery Grants Program - Individual
CAREER: An Ultra-low Power Analog Computing Hardware Design Framework for Machine Learning Inference in Edge Biomedical Devices
职业:用于边缘生物医学设备中机器学习推理的超低功耗模拟计算硬件设计框架
- 批准号:
2144703 - 财政年份:2022
- 资助金额:
$ 0.51万 - 项目类别:
Continuing Grant