New Probabilistic Methods for Observational Cosmology
观测宇宙学的新概率方法
基本信息
- 批准号:1517237
- 负责人:
- 金额:$ 32.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Future astronomical surveys will be producing such enormous quantities of data that new analysis methods are becoming imperative. Especially when large quantities of information must be distilled into theoretical insights, and the individual items are themselves actually of less certainty, a probability-based approach offers impressive advantages. This project will generate toolkits to implement such novel approaches to the extraction of knowledge from overwhelmingly large data sets. With the potential to transform the way science is done both in cosmology and in other areas under threat of being swamped with data, the impact of this work cannot be overestimated. The methods will both use and propagate collaborations with applied mathematics that make the impossible possible.New cosmological surveys will require measurement of smaller signals using larger numbers of galaxies which are individually observed at lower confidence. This will require data analyses that are as information-preserving as possible. This project will create new methods for cosmological data analysis that permit inferences using not lossy, derived data products, such as galaxy catalogs, best-fit redshifts, or correlation function point estimates, but something much closer to the original imaging and spectroscopic data. These techniques will be informed by the principles of probabilistic inference and applied-mathematics technology. The work creates three related toolsets. Toolset 1 is for reconstruction and marginalization of cosmological density fields, which could be the mass, galaxy, or neutral-gas density field, or the two-dimensional projected mass density. Toolset 2 is for cosmological inference that makes proper use of probabilistic information about galaxy and quasar redshifts, improving probabilistic redshift information, and providing informative imputation of missing redshifts, thereby producing predictions and tools for smaller-scale scientific questions. Toolset 3 is for propagation of probabilistic image-level quantities such as galaxy shapes and the point-spread function, into weak-lensing studies of large-scale structure. This will permit inference from survey data conditional priors over galaxy shapes, and use them in a justified forward-modeling measurement of the shear field and cosmological parameters. The toolsets from this project will be the first practical methods for cosmological inference and large-scale structure measurement that can make full and proper, justified, use of probabilistic outputs. For the first time, it will be possible to perform simultaneous inference or refinement of catalog-level properties along with large-scale structure and cosmological inferences. Simultaneous inference will significantly reduce statistical biases in cosmological measurements, and also reduce variance in catalog-level quantities.The toolsets will be papers and methods but also open-source codebases, with benefits beyond cosmology. These developments will help create standards for generating and delivering probabilistic outputs. The research will reach populations inside and outside academia by producing pedagogical papers on inference, data analysis, and computational statistics in the physical sciences.
未来的天文观测将产生如此大量的数据,新的分析方法变得势在必行。 特别是当大量的信息必须被提炼成理论见解,而单个项目本身实际上不太确定时,基于概率的方法提供了令人印象深刻的优势。 该项目将产生工具包,以实施这种新颖的方法,从庞大的数据集中提取知识。 由于有可能改变宇宙学和其他面临数据淹没威胁的领域的科学研究方式,这项工作的影响不能被高估。 新的宇宙学调查将需要使用大量的星系来测量更小的信号,这些星系是以较低的置信度单独观测的。 这将需要尽可能保存信息的数据分析。 该项目将创建新的宇宙学数据分析方法,允许使用非有损的衍生数据产品进行推断,例如星系目录,最佳拟合红移或相关函数点估计,但更接近原始成像和光谱数据。 这些技术将通过概率推理和应用数学技术的原则通知。 该工作创建了三个相关的工具集。 工具集1用于宇宙学密度场的重建和边缘化,它可以是质量、星系或中性气体密度场,也可以是二维投影质量密度。 工具集2用于宇宙学推断,它适当地利用了关于星系和类星体红移的概率信息,改进了概率红移信息,并为丢失的红移提供了信息性的估算,从而为较小规模的科学问题提供了预测和工具。 工具集3用于传播概率图像级量,如星系形状和点扩散函数,以进行大尺度结构的弱透镜研究。 这将允许从调查数据的条件先验推断星系的形状,并使用它们在一个合理的前向建模测量的剪切场和宇宙学参数。 该项目的工具集将是宇宙学推断和大规模结构测量的第一个实用方法,可以充分、适当、合理地使用概率输出。 这将是第一次,它将有可能执行同时推理或细化的目录级属性沿着与大尺度结构和宇宙学的推论。 同步推断将大大减少宇宙学测量中的统计偏差,也会减少目录级数量的差异。工具集将是论文和方法,但也是开源代码库,其好处超出了宇宙学。 这些发展将有助于创建生成和提供概率输出的标准。 该研究将通过制作物理科学中的推理,数据分析和计算统计的教学论文来接触学术界内外的人群。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Hogg其他文献
Transmembrane signalling by interleukin 2.
白细胞介素 2 的跨膜信号传导。
- DOI:
- 发表时间:
1991 - 期刊:
- 影响因子:3.9
- 作者:
Gordon B. Mills;Nan Zhang;Rosemarie Schmandt;Marion Fung;Warner C. Greene;Alan Mellors;David Hogg - 通讯作者:
David Hogg
Cognitive Workflow Capturing and Rendering with On-Body Sensor Networks (COGNITO)
使用体上传感器网络 (COGNITO) 进行认知工作流程捕获和渲染
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Gabriele Bleser;Luis Almeida;Ardhendu Behera;Andrew Calway;Anthony Cohn;D. Damen;Hugo Domingues;Andrew Gee;Dominic Gorecky;David Hogg;Michael Kraly;Trivisio Prototyping;GmbH;Germany Gustavo;Maçães;Frédéric Marin;Walterio W. Mayol;M. Miezal;K. Mura;Nils Petersen;N. Vignais;Luís Paulo;Santos;G. Spaas;Germany Gmbh;Stricker - 通讯作者:
Stricker
Mutation analysis of the PALB2 cancer predisposition gene in familial melanoma
家族性黑色素瘤PALB2癌易感基因突变分析
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:2.2
- 作者:
N. Sabbaghian;N. Sabbaghian;R. Kyle;R. Kyle;A. Hao;David Hogg;M. Tischkowitz;M. Tischkowitz - 通讯作者:
M. Tischkowitz
Chapter 53 – Testicular Cancer
第53章-睾丸癌
- DOI:
10.1016/b978-1-4377-1637-5.00053-5 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
P. Warde;David Hogg;M. Gospodarowicz - 通讯作者:
M. Gospodarowicz
Melanoma and immunotherapy bridge 2015
- DOI:
10.1186/s12967-016-0791-2 - 发表时间:
2016-07-01 - 期刊:
- 影响因子:7.500
- 作者:
Vashisht G. Y. Nanda;Weiyi Peng;Patrick Hwu;Michael A. Davies;Gennaro Ciliberto;Luigi Fattore;Debora Malpicci;Luigi Aurisicchio;Paolo Antonio Ascierto;Carlo M. Croce;Rita Mancini;Stefani Spranger;Thomas F. Gajewski;Yangyang Wang;Soldano Ferrone;Claire Vanpouille-Box;Erik Wennerberg;Karsten A. Pilones;Silvia C. Formenti;Sandra Demaria;Haidong Tang;Yang Wang;Yang-Xin Fu;Reinhard Dummer;Igor Puzanov;Ahmad Tarhini;Joe-Marc Chauvin;Ornella Pagliano;Julien Fourcade;Zhaojun Sun;Hong Wang;Cindy Sanders;John M. Kirkwood;Tseng-hui Timothy Chen;Mark Maurer;Alan J. Korman;Hassane M. Zarour;David F. Stroncek;Veronica Huber;Licia Rivoltini;Magdalena Thurin;Tilman Rau;Alessandro Lugli;Franck Pagès;Jorge Camarero;Arantxa Sancho;Claudio Jommi;Yago Pico de Coaña;Maria Wolodarski;Yuya Yoshimoto;Giusy Gentilcore;Isabel Poschke;Giuseppe V. Masucci;Johan Hansson;Rolf Kiessling;Giosuè Scognamiglio;Francesco Sabbatino;Federica Zito Marino;Anna Maria Anniciello;Monica Cantile;Margherita Cerrone;Stefania Scala;Crescenzo D’alterio;Angela Ianaro;Giuseppe Cirin;Giuseppina Liguori;Gerardo Bott;Paul B. Chapman;Caroline Robert;James Larkin;John B. Haanen;Antoni Ribas;David Hogg;Omid Hamid;Alessandro Testori;Paul Lorigan;Jeffrey A. Sosman;Keith T. Flaherty;Huibin Yue;Shelley Coleman;Ivor Caro;Axel Hauschild;Grant A. McArthur;Mario Sznol;Margaret K. Callahan;Harriet Kluger;Michael A. Postow;RuthAnn Gordan;Neil H. Segal;Naiyer A. Rizvi;Alexander Lesokhin;Michael B. Atkins;Matthew M. Burke;Amanda Ralabate;Angel Rivera;Stephanie A. Kronenberg;Blessing Agunwamba;Mary Ruisi;Christine Horak;Joel Jiang;Jedd Wolchok;Paolo A. Ascierto;Gabriella Liszkay;Michele Maio;Mario Mandalà;Lev Demidov;Daniil Stoyakovskiy;Luc Thomas;Luis de la Cruz-Merino;Victoria Atkinson;Caroline Dutriaux;Claus Garbe;Matthew Wongchenko;Ilsung Chang;Daniel O. Koralek;Isabelle Rooney;Yibing Yan;Brigitte Dréno;Ryan Sullivan;Manish Patel;Stephen Hodi;Rodabe Amaria;Peter Boasberg;Jeffrey Wallin;Xian He;Edward Cha;Nicole Richie;Marcus Ballinger;David C. Smith;Todd M. Bauer;Jeffrey S. Wasser;Jason J. Luke;Ani S. Balmanoukian;David R. Kaufman;Yufan Zhao;Janet Maleski;Lance Leopold;Tara C. Gangadhar;Georgina V. Long;Olivier Michielin;Ari VanderWalde;Robert H. I. Andtbacka;Jonathan Cebon;Eugenio Fernandez;Josep Malvehy;Anthony J. Olszanski;Christine Gause;Lisa Chen;Jeffrey Chou;F. Stephen Hodi;Benjamin Brady;Laurent Mortier;Jessica C. Hassel;Piotr Rutkowski;Catriona McNeil;Ewa Kalinka-Warzocha;Celeste Lebbé;Lars Ny;Matias Chacon;Paola Queirolo;Carmen Loquai;Parneet Cheema;Alfonso Berrocal;Karmele Mujika Eizmendi;Gil Bar-Sela;Christine Horak;Helene Hardy;Jeffrey S. Weber;Jean-Jacques Grob;Ivan Marquez-Rodas;Henrik Schmidt;Karen Briscoe;Jean-François Baurain;Jedd D. Wolchok;Rosamaria Pinto;Simona De Summa;Vito Michele Garrisi;Sabino Strippoli;Amalia Azzariti;Gabriella Guida;Michele Guida;Stefania Tommasi;Nicolas Jacquelot;David Enot;Caroline Flament;Jonathan M. Pitt;Nadège Vimond;Carolin Blattner;Takahiro Yamazaki;Maria-Paula Roberti;Marie Vetizou;Romain Daillere;Vichnou Poirier-Colame;Michaë la Semeraro;Anne Caignard;Craig L Slingluff;Federica Sallusto;Sylvie Rusakiewicz;Benjamin Weide;Aurélien Marabelle;Holbrook Kohrt;Stéphane Dalle;Andréa Cavalcanti;Guido Kroemer;Anna Maria Di Giacomo;Michaele Maio;Phillip Wong;Jianda Yuan;Viktor Umansky;Alexander Eggermont;Laurence Zitvogel;Passarelli Anna;Tucci Marco;Stucci Stefania;Mannavola Francesco;Capone Mariaelena;Madonna Gabriele;Ascierto Paolo Antonio;Silvestris Franco;María Paula Roberti;David P. Enot;Michaela Semeraro;Sarah Jégou;Camila Flores;Tseng-hui Timothy Chen;Byoung S. Kwon;Ana Carrizossa Anderson;Christophe Borg;François Aubin;Maha Ayyoub;Anna Lisa De Presbiteris;Fabiola Gilda Cordaro;Rosa Camerlingo;Federica Fratangelo;Nicola Mozzillo;Giuseppe Pirozzi;Eduardo J. Patriarca;Emilia Caputo;Maria Letizia Motti;Rosaria Falcon;Roberta Miceli;Mariaelena Capone;Gabriele Madonna;Domenico Mallardo;Maria Vincenza Carrier;Elisabetta Panza;Paola De Cicco;Chiara Armogida;Giuseppe Ercolano;Gerardo Botti;Giuseppe Cirino;Angela Sandru;Miri Blank;Timea Balatoni;Judit Olasz;Emil Farkas;Andras Szollar;Akos Savolt;Maria Godeny;Orsolya Csuka;Szabolcs Horvath;Klara Eles;Yehuda Shoenfeld;Miklos Kasler;Susan Costantini;Francesca Capone;Farnaz Moradi;Pontus Berglund;Karin Leandersson;Rickard Linnskog;Tommy Andersson;Chandra Prakash Prasad;Cristiana Lo Nigro;Laura Lattanzio;Hexiao Wang;Charlotte Proby;Nelofer Syed;Marcella Occelli;Carolina Cauchi;Marco Merlano;Catherine Harwood;Alastair Thompson;Tim Crook;Katia Bifulco;Vincenzo Ingangi;Michele Minopoli;Concetta Ragone;Antonello Pessi;Francesco Mannavola;Stella D’Oronzo;Claudia Felici;Marco Tucci;Antonio Doronzo;Franco Silvestris;Anna Ferretta;Stefania Guida;Imma Maida;Tiziana Cocco;Anna Passarelli;Davide Quaresmini;Ornella Franzese;Belinda Palermo;Cosmo Di Donna;Isabella Sperduti;MariaLaura Foddai;Helena Stabile;Angela Gismondi;Angela Santoni;Paola Nisticò;Andrea P. Sponghini;Francesca Platini;Elena Marra;David Rondonotti;Oscar Alabiso;Maria T. Fierro;Paola Savoia;Florian Stratica;Pietro Quaglino; Gianluca Di Monta;Caracò Corrado; Massimiliano Di Marzo;Marone Ugo; Maria Luisa Di Cecilia;Mozzillo Nicola;Celeste Fusciello;Antonio Marra;Rosario Guarrasi;Carlo Baldi;Rosa Russo; Giovanni Di Giulio;Vincenzo Faiola;Pio Zeppa;Stefano Pepe;Elisabetta Gambale;Consiglia Carella;Alessandra Di Paolo;Michele De Tursi;Laura Marra;Fara De Murtas;Valeria Sorrentino;Silviu Voinea;Eugenia Panaitescu;Madalina Bolovan;Adina Stanciu;Sabin Cinca;Chiara Botti;Gabriella Aquino;Annamaria Anniciello;Cristina Fortes;Simona Mastroeni;Alessio Caggiati;Francesca Passarelli;Alba Zappalà;Maria Capuano;Riccardo Bono;Maurizio Nudo;Claudia Marino;Paola Michelozzi;Valeria De Biasio;Vincenzo C. Battarra;Silvia Formenti;Maria Libera Ascierto;Tracee L. McMiller;Alan E. Berger;Ludmila Danilova;Robert A. Anders;George J. Netto;Haiying Xu;Theresa S. Pritchard;Jinshui Fan;Chris Cheadle;Leslie Cope;Charles G. Drake;Drew M. Pardoll;Janis M. Taube;Suzanne L. Topalian;Sacha Gnjatic;Sarah Nataraj;Naoko Imai;Adeeb Rahman;Achim A. Jungbluth;Linda Pan;Ralph Venhaus;Andrew Park;Frédéric F. Lehmann;Nikoletta Lendvai;Adam D. Cohen;Hearn J. Cho;Speiser Daniel;Vera Hirsh - 通讯作者:
Vera Hirsh
David Hogg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Hogg', 18)}}的其他基金
Collaborative Research: Community Planning for Scalable Cyberinfrastructure to Support Multi-Messenger Astrophysics
合作研究:支持多信使天体物理学的可扩展网络基础设施的社区规划
- 批准号:
1841594 - 财政年份:2018
- 资助金额:
$ 32.83万 - 项目类别:
Standard Grant
Analysing the Motion of Biological Swimmers
分析生物游泳者的运动
- 批准号:
EP/S01540X/1 - 财政年份:2018
- 资助金额:
$ 32.83万 - 项目类别:
Research Grant
Experimental Equipment Call - University of Leeds
实验设备调用 - 利兹大学
- 批准号:
EP/M028143/1 - 财政年份:2015
- 资助金额:
$ 32.83万 - 项目类别:
Research Grant
CDI-Type I: A Unified Probabilistic Model of Astronomical Imaging
CDI-Type I:天文成像的统一概率模型
- 批准号:
1124794 - 财政年份:2011
- 资助金额:
$ 32.83万 - 项目类别:
Standard Grant
Dynamical Models from Kinematic Data: The Milky Way Disk and Halo
运动学数据的动力学模型:银河系盘和光环
- 批准号:
0908357 - 财政年份:2009
- 资助金额:
$ 32.83万 - 项目类别:
Standard Grant
Cognitive Systems Foresight: Human Attention and Machine Learning
认知系统前瞻:人类注意力和机器学习
- 批准号:
EP/E010164/1 - 财政年份:2007
- 资助金额:
$ 32.83万 - 项目类别:
Research Grant
Learning about Activities from Video
从视频中了解活动
- 批准号:
EP/D061334/1 - 财政年份:2006
- 资助金额:
$ 32.83万 - 项目类别:
Research Grant
ITR - ASE - int+dmc+soc: Automated Astrometry for Time-Domain and Distributed Astrophysics
ITR - ASE - int dmc soc:时域和分布式天体物理学的自动天体测量
- 批准号:
0428465 - 财政年份:2004
- 资助金额:
$ 32.83万 - 项目类别:
Standard Grant
相似海外基金
Analytic and Probabilistic Methods in Geometric Functional Analysis
几何泛函分析中的解析和概率方法
- 批准号:
2246484 - 财政年份:2023
- 资助金额:
$ 32.83万 - 项目类别:
Standard Grant
Probabilistic methods towards understanding complex human phenotypes using genomic and healthcare data
使用基因组和医疗数据理解复杂人类表型的概率方法
- 批准号:
RGPIN-2019-06216 - 财政年份:2022
- 资助金额:
$ 32.83万 - 项目类别:
Discovery Grants Program - Individual
Disaster Resilience of Urban Communities in Canada: New Probabilistic Models and Computational Methods
加拿大城市社区的抗灾能力:新的概率模型和计算方法
- 批准号:
RGPIN-2019-03991 - 财政年份:2022
- 资助金额:
$ 32.83万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
- 批准号:
2139735 - 财政年份:2022
- 资助金额:
$ 32.83万 - 项目类别:
Standard Grant
Probabilistic methods in KPZ universality and stochastic optimisation
KPZ 普适性和随机优化中的概率方法
- 批准号:
RGPIN-2020-06063 - 财政年份:2022
- 资助金额:
$ 32.83万 - 项目类别:
Discovery Grants Program - Individual
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
- 批准号:
DGECR-2022-00431 - 财政年份:2022
- 资助金额:
$ 32.83万 - 项目类别:
Discovery Launch Supplement
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
- 批准号:
RGPIN-2022-02961 - 财政年份:2022
- 资助金额:
$ 32.83万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
- 批准号:
2140057 - 财政年份:2022
- 资助金额:
$ 32.83万 - 项目类别:
Standard Grant
Disaster Resilience of Urban Communities in Canada: New Probabilistic Models and Computational Methods
加拿大城市社区的抗灾能力:新的概率模型和计算方法
- 批准号:
RGPIN-2019-03991 - 财政年份:2021
- 资助金额:
$ 32.83万 - 项目类别:
Discovery Grants Program - Individual
Modelling the shape of Triton's atmosphere using photometric light curves from satellite constellations and probabilistic estimation methods
使用卫星星座的光度曲线和概率估计方法对海卫一的大气形状进行建模
- 批准号:
532704-2019 - 财政年份:2021
- 资助金额:
$ 32.83万 - 项目类别:
Postgraduate Scholarships - Doctoral