COMBINED SINGLE MOLECULE AND IN-CELL APPROACHES TO UNDERSTAND DYNEIN-MEDIATED MITOTIC CHECKPOINT SILENCING
结合单分子和细胞内方法来了解动力蛋白介导的有丝分裂检查点沉默
基本信息
- 批准号:1518083
- 负责人:
- 金额:$ 71.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-15 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cell division is one of the most fundamental processes of all life. Various molecular processes converge during cell division to ensure that it takes place with a high level of accuracy and fidelity. For instance, the genetic information contained with the chromosomes is faithfully divided between mother and daughter cells during each round of cell division or mitosis such that mistakes are very rarely made. The machinery that ensures high-fidelity chromosome inheritance from mother to daughter cells includes a highly elaborate assemblage of filamentous structures called microtubules, and large complex structures assembled upon the chromosomes called kinetochores. Proper division of the genetic material requires that each kinetochore make a proper and stable attachment to microtubules prior to the end of mitosis. Interestingly, kinetochores monitor and regulate their own attachment status; however, how the attachment status of each kinetochore is relayed to the machinery that initiates exit from mitosis is unknown. This project aims to determine how a molecular motor protein called dynein affects and facilitates proper division of the genetic material during mitosis. The results from this project will have significant impact on our understanding of cell division, and the various underlying processes that are tightly regulated and highly orchestrated to perform this critical biological function reproducibly and with high fidelity. In addition, this project will impact the scientific literacy of the community through the implementation of an undergraduate course, and also by teaching elementary students about cell division, and the scientific method.In this project, the investigator will examine how cells accurately and reliably segregate their genetic material during cell division. To prevent errors during chromatid separation during mitosis, cells employ a fail-safe mechanism called the spindle assembly checkpoint (SAC), which prevents mitotic progression until all chromosomes have established proper kinetochore-microtubule attachments. In this project, investigators will probe the role of the microtubule motor protein dynein in the transport (SAC) proteins away from kinetochores, thereby silencing the inhibitory signal, and allowing the initiation of anaphase and progression through mitosis. A combination of in vitro and in-cell approaches will be employed to understand the role for dynein in this process, and to understand how microtubule attachment status is translated into activation of dynein-mediated SAC protein eviction from kinetochores. These studies will be transformative because they will answer key questions regarding the SAC by implementing a newly developed single molecule approach in which kinetochore dynein activity is reconstituted in vitro. By combining this in vitro approach with in-cell high- and super-resolution fluorescence microscopy, the following key unanswered questions in cell biology will be addressed: (1) What is the role of dynein in eviction of SAC effectors from attached kinetochores? (2) What is the biological signal that initiates dyneinmediated eviction of SAC effectors from attached kinetochores? This project will lead to a greater understanding of the control of cell division while training diverse students in basic sciences and providing outreach to K-12 students.
细胞分裂是所有生命最基本的过程之一。在细胞分裂过程中,各种分子过程会聚在一起,以确保它以高水平的准确性和保真度发生。 例如,染色体所包含的遗传信息在每一轮细胞分裂或有丝分裂期间在母细胞和子细胞之间忠实地分配,因此很少发生错误。确保从母体细胞到子细胞的高保真染色体遗传的机制包括高度精细的丝状结构(称为微管)和组装在染色体上的大型复杂结构(称为动粒)。遗传物质的正确分裂要求每个动粒在有丝分裂结束前与微管正确稳定地连接。有趣的是,动粒监测和调节它们自己的附着状态;然而,每个动粒的附着状态如何被传递到启动退出有丝分裂的机制尚不清楚。该项目旨在确定一种称为动力蛋白的分子马达蛋白如何影响和促进有丝分裂过程中遗传物质的正确分裂。该项目的结果将对我们理解细胞分裂以及各种受到严格调控和高度协调的潜在过程产生重大影响,以可重复和高保真地执行这一关键生物功能。此外,本项目还将通过开设本科生课程,以及向小学生传授细胞分裂知识和科学方法,对社会的科学素养产生影响。在本项目中,研究者将研究细胞在细胞分裂过程中如何准确可靠地分离其遗传物质。为了防止在有丝分裂期间染色单体分离期间的错误,细胞采用称为纺锤体组装检查点(SAC)的故障安全机制,该机制阻止有丝分裂进程,直到所有染色体都建立了适当的着丝粒微管附着。 在这个项目中,研究人员将探索微管运动蛋白动力蛋白在运输(SAC)蛋白远离动粒中的作用,从而沉默抑制信号,并允许后期的启动和有丝分裂的进展。将采用体外和细胞内方法的组合来了解动力蛋白在此过程中的作用,并了解微管附着状态如何转化为动力蛋白介导的SAC蛋白从着丝粒驱逐的激活。这些研究将是变革性的,因为它们将通过实施新开发的单分子方法来回答关于SAC的关键问题,其中动粒动力蛋白活性在体外重建。通过将这种体外方法与细胞内高分辨率和超分辨率荧光显微镜相结合,将解决细胞生物学中以下关键的未回答的问题:(1)动力蛋白在从附着的动粒驱逐SAC效应物中的作用是什么?(2)什么是启动动力蛋白介导的SAC效应器从附着的动粒驱逐的生物信号?该项目将导致更好地了解细胞分裂的控制,同时培训基础科学的不同学生,并为K-12学生提供外展服务。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer DeLuca其他文献
Jennifer DeLuca的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于Single Cell RNA-seq的斑马鱼神经干细胞不对称分裂调控机制研究
- 批准号:31601181
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
甲醇合成汽油工艺中烯烃催化聚合过程的单元步骤(single event)微动力学理论研究
- 批准号:21306143
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Combined Single-Molecule Raman and Conductance Spectroscopies for Understanding Electric Field-Controlled Chemistry
结合单分子拉曼光谱和电导光谱来了解电场控制化学
- 批准号:
2204223 - 财政年份:2022
- 资助金额:
$ 71.55万 - 项目类别:
Continuing Grant
Combined Single-Molecule Raman and Conductance Spectroscopies for Understanding Electric Field-Controlled Chemistry
结合单分子拉曼光谱和电导光谱来了解电场控制化学
- 批准号:
2239226 - 财政年份:2022
- 资助金额:
$ 71.55万 - 项目类别:
Continuing Grant
Combined Optical Tweezers-Fluorescence Super-Resolution Microscope for Single-Molecule Biophysical Studies
用于单分子生物物理研究的光镊-荧光超分辨率组合显微镜
- 批准号:
10177000 - 财政年份:2021
- 资助金额:
$ 71.55万 - 项目类别:
Combined single-molecule fluorescence confocal and dual-trap optical tweezers
组合单分子荧光共焦和双阱光镊
- 批准号:
10177519 - 财政年份:2021
- 资助金额:
$ 71.55万 - 项目类别:
Investigation of elementary steps of transcription initiation by HS-AFM combined with single-molecule fluorescence microscopy
HS-AFM结合单分子荧光显微镜研究转录起始的基本步骤
- 批准号:
20K15140 - 财政年份:2020
- 资助金额:
$ 71.55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Bilayer-Insertion Mechanisms of Self-Inserting Membrane Proteins by Combined Ensemble and Single-Molecule Spectroscopy
通过组合集成和单分子光谱研究自插入膜蛋白的双层插入机制
- 批准号:
276454827 - 财政年份:2015
- 资助金额:
$ 71.55万 - 项目类别:
Research Grants
Combined light sheet and scanning ion conductance microscopy : a new tool to perform single molecule biology in live cells
组合光片和扫描离子电导显微镜:在活细胞中进行单分子生物学的新工具
- 批准号:
EP/L027631/1 - 财政年份:2014
- 资助金额:
$ 71.55万 - 项目类别:
Research Grant
Combined ultrahigh-resolution optical tweezers and single-molecule fluorescence
超高分辨率光镊与单分子荧光相结合
- 批准号:
7943010 - 财政年份:2009
- 资助金额:
$ 71.55万 - 项目类别:
Ultrafast electron transfer at the molecule/nanoparticle junction: A combined single molecule fluorescence and ensemble average transient absorption study
分子/纳米粒子连接处的超快电子转移:单分子荧光和整体平均瞬态吸收相结合的研究
- 批准号:
0514662 - 财政年份:2005
- 资助金额:
$ 71.55万 - 项目类别:
Continuing Grant
Combined Single-Collision/Multicollision Experiments: An Approach to Radical-Radical and Radical-Molecule Reaction Mechanism Studies
单碰撞/多重碰撞组合实验:自由基-自由基和自由基-分子反应机制研究的方法
- 批准号:
8601431 - 财政年份:1986
- 资助金额:
$ 71.55万 - 项目类别:
Continuing Grant