NeTS: Large: Collaborative Research: GigaNets: A Path to Experimental Research in Millimeter Wave Networking
NeTS:大型:协作研究:GigaNets:毫米波网络实验研究之路
基本信息
- 批准号:1518632
- 负责人:
- 金额:$ 48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2020-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Wireless communication technologies such as cellular and WiFi are indispensable for modern society. However, existing wireless networks are under severe stress due to the explosive demand caused by smart mobile devices capable of creating and consuming large amounts of multimedia content (especially images and video). Meeting these demands is estimated to require 1000-fold increases in wireless network capacity, which cannot be obtained by incremental advances using existing spectrum. A promising approach for delivering the required revolutionary advances in wireless by employ the so-called 'millimeter (mm) wave' band, which has huge amounts of available spectrum (e.g., 7 GHz in the unlicensed 60 GHz band alone). The wavelength in these bands is an order of magnitude smaller than that in today's wireless networks, drastically changing the physical and propagation characteristics: for example, mm waves are easily blocked by obstacles such as human bodies, but steerable antenna arrays with a very large number of elements (up to 1000) can fit in compact form factors, enabling us to potentially steer around obstacles using bounces from reflectors. As a consequence, realizing the potential for mm wave communication requires a comprehensive reexamination of existing wireless design principles, using an interdisciplinary approach that goes all the way from antenna design to network protocols. The goal of this project is to take such an approach for establishing fundamental principles for design of next generation mm wave communication networks, with a research agenda combining cross-layer modeling, design, and performance evaluation, firmly grounded in experiment. A key technical issue is to how to efficiently adapt electronically steerable arrays with a large number of elements, and to integrate them into network protocols.The research is driven by the following cutting edge system concepts: (a) Cellular 1000X, aimed at relieving the cellular capacity bottleneck via 60 GHz cellular links delivering Gbps data rates to the mobile, together with a seamless extension to indoor networks; (b) 'Wireless fiber' backhaul at 140 GHz for enabling Cellular 1000X, based on easy to deploy outdoor wireless mesh networks with link speeds approaching 40-100 Gbps; (c) 40 Gbps indoor 60 GHz links, aimed at going beyond nascent industry efforts such as NG60 that aim to upgrade link speeds in the recently developed IEEE 802.11ad wireless local area network standard. The goal of this project is to design a system that will achieve the stated objectives, and prototype an advanced proof-of-concept that will help pave the way for eventual technology transfer leveraging the close ties of the project team to industry. A 60 GHz experimental platform developed to support the research will be made available to the research community, to stimulate a broader academic effort in this area. Due to the small carrier wavelengths, beamforming at both ends is critical to make the link budget work, but it is essential to make the beams electronically steerable to steer around obstacles (which ``look bigger at smaller wavelengths''), and to allow automatic network configuration. Cross-layer frameworks for resilient pencil beam networking for both Cellular 1000X and indoor WLANs will be developed and demonstrated. These will incorporate compressive array adaptation techniques, a core innovation to be demonstrated in this project. Compressive adaptation enables 3D beamforming for robust link budgets, steering around blockage, and spatial reuse, and enables scaling of both the number of antenna elements and the nodes in the network, unlike existing scan-based IEEE 802.11ad medium access control (MAC) techniques. System concepts to be designed and tested include (a) `Picocloud' network architectures that employ tight coordination between base stations and APs (for outdoor and indoor environments, respectively) to provide seamless connectivity in the face of blockage; (b) Integration of beamforming with spatial multiplexing in LoS or near-LoS environments, demonstrating the scaling of available degrees of freedom with carrier frequency through prototypes at 60 GHz and 140 GHz.A reconfigurable phased array at 60 GHz will be developed and integrated with the NSF/CRI-funded WiMi software defined radio platform, in order to enable the preceding system-level explorations (while beamsteering ICs developed by industry have been incorporated into products, external control of the beamsteering coefficients is not available). In addition, a hardware testbed for LoS spatial multiplexing at 140 GHz will be developed to demonstrate the potential for 'wireless fiber' backhaul links beyond 100 GHz.
蜂窝和WiFi等无线通信技术是现代社会不可或缺的技术。然而,由于能够创建和消费大量多媒体内容(特别是图像和视频)的智能移动设备带来的爆炸性需求,现有的无线网络面临着严重的压力。要满足这些需求,估计需要将无线网络容量增加1000倍,而这不能通过使用现有频谱的增量改进来实现。一种前景看好的方法是通过使用所谓的“毫米(Mm)波”频段来实现无线领域所需的革命性进步,该频段具有大量的可用频谱(例如,仅在未经许可的60 GHz频段中就有7 GHz)。这些频段的波长比今天无线网络中的要小一个数量级,从而极大地改变了无线网络的物理和传播特性:例如,毫米波很容易被人体等障碍物阻挡,但具有非常大量元素(多达1000个)的可控天线阵列可以紧凑地安装在一起,使我们能够利用反射器的反弹来避开障碍物。因此,实现毫米波通信的潜力需要对现有的无线设计原则进行全面的重新审查,使用从天线设计到网络协议的跨学科方法。该项目的目标是采用这种方法来建立下一代毫米波通信网络设计的基本原则,并以实验为坚实基础,结合跨层建模、设计和性能评估的研究议程。一个关键的技术问题是如何有效地适应具有大量元件的电子可控阵列,并将它们集成到网络协议中。这项研究是由以下尖端系统概念驱动的:(A)蜂窝1000X,旨在通过向移动设备提供Gbps数据速率的60 GHz蜂窝链路缓解蜂窝容量瓶颈,并无缝扩展到室内网络;(B)140 GHz的“无线光纤”回程,以实现蜂窝1000X,基于易于部署的室外无线网状网络,链路速度接近40-100Gbps;(C)40 Gbps室内60 GHz链路,旨在超越新兴的行业努力,如NG60,旨在提升最近开发的IEEE 802.11ad无线局域网标准中的链路速度。该项目的目标是设计一个能够实现所述目标的系统,并设计一个先进的概念验证原型,这将有助于利用项目团队与行业的密切联系为最终的技术转让铺平道路。为支持这项研究而开发的60 GHz实验平台将向研究界提供,以刺激该领域更广泛的学术努力。由于载波波长较小,两端的波束成形对链路预算的工作至关重要,但必须使波束可以通过电子方式引导以绕过障碍物(在较小的波长下看起来更大),并允许自动网络配置。将开发和演示用于蜂窝1000X和室内无线局域网的弹性铅笔束网络的跨层框架。这些将包括压缩阵列自适应技术,这是本项目将展示的核心创新。与现有的基于扫描的IEEE 802.11ad媒体访问控制(MAC)技术不同,压缩自适应支持3D波束成形以实现稳健的链路预算、绕过阻塞和空间重用,并支持调整天线单元和网络中的节点数量。要设计和测试的系统概念包括:(A)采用基站和存取点(分别用于室外和室内环境)之间紧密协调的‘PicoCloud’网络结构,以便在遇到阻塞时提供无缝连接;(B)将波束成形与视线或近视线环境中的空间多路传输相结合,通过60 GHz和140 GHz的原型展示可用自由度随载波频率的变化。将开发一个60 GHz的可重构相控阵,并将其与国家科学基金会/国际研究开发中心资助的WiMi软件定义的无线电平台相结合,以便能够进行上述系统级探索(虽然产业界开发的波束导引集成电路已被纳入产品中,但无法对波束导引系数进行外部控制)。此外,还将开发一个用于140 GHz LOS空间多路复用的硬件试验台,以展示超过100 GHz的“无线光纤”回程链路的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amin Arbabian其他文献
Amin Arbabian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amin Arbabian', 18)}}的其他基金
CAREER: Ultrasonically-Powered Smart Medical Implants for Monitoring and Modulating Local Physiology
职业:超声波驱动的智能医疗植入物,用于监测和调节局部生理机能
- 批准号:
1454107 - 财政年份:2015
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
- 批准号:
2312711 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
- 批准号:
2312710 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
- 批准号:
2312709 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
NeTS: Large: Collaborative Research: Design Principles for a Future-Proof Internet Control Plane
NetS:大型:协作研究:面向未来的互联网控制平面的设计原则
- 批准号:
2202649 - 财政年份:2021
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
NeTS: Large: Collaborative Research: ASTRO: A Platform for 3-D Data-Driven Mobile Sensing via Networked Drones
NeTS:大型:协作研究:ASTRO:通过联网无人机进行 3D 数据驱动的移动传感平台
- 批准号:
1801865 - 财政年份:2018
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
NeTS: Large: Collaborative Research: GigaNets: A Path to Experimental Research in Millimeter Wave Networking
NeTS:大型:协作研究:GigaNets:毫米波网络实验研究之路
- 批准号:
1952942 - 财政年份:2018
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
NeTS: CSR: Large: Collaborative Research: Co-Design of Network, Storage and Computation Fabrics for Disaggregated Datacenters
NeTS:CSR:大型:协作研究:分解数据中心的网络、存储和计算结构的协同设计
- 批准号:
1704742 - 财政年份:2017
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
NeTS: CSR: Large: Collaborative Research: Co-Design of Network, Storage and Computation Fabrics for Disaggregated Datacenters
NeTS:CSR:大型:协作研究:分解数据中心的网络、存储和计算结构的协同设计
- 批准号:
1704941 - 财政年份:2017
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
NeTS: Large: Collaborative Research: Design Principles for a Future-Proof Internet Control Plane
NetS:大型:协作研究:面向未来的互联网控制平面的设计原则
- 批准号:
1565343 - 财政年份:2016
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
NeTS: Large: Collaborative Research: Design Principles for a Future-Proof Internet Control Plane
NetS:大型:协作研究:面向未来的互联网控制平面的设计原则
- 批准号:
1565277 - 财政年份:2016
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant