SHF: Large: Collaborative Research: Molecular computing for the real world
SHF:大型:协作研究:现实世界的分子计算
基本信息
- 批准号:1518715
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Molecular computing is a promising computational paradigm in which computational functions are evaluated at the nanoscale, with potential applications in smart molecular diagnostics and therapeutics. A molecular computing system comprises biomolecules, such as DNA strands, which have been designed to detect certain input molecules by binding to them and subsequently to undergo programmed sequences of chemical reactions that serve to compute a logical function based on the observed pattern of input molecules. For example, a molecular system that requires both of its two inputs to be present simultaneously in order to generate an output signal would be referred to as computing a logical "AND" function on the two inputs. However, despite recent advances in the field, prospects for direct application of these techniques to solve real-world problems are limited by the lack of robust interfaces between molecular computers and biological and chemical systems. This project will address this limitation by targeting two specific application domains: wide-spectrum chemical sensing and cell surface analysis using molecular logic cascades. The state of the art in molecular computer design, modeling, and implementation will be advanced by an interdisciplinary combination of research by computer scientists, bioengineers, chemists, and computer engineers, and successful completion of the proposed activity will be a significant step towards routine deployment of molecular computers to address real-world problems in chemical and biological sensing.In this project, molecular circuit architectures that process sensor inputs from chemical sensors and cell-surface analysis reactions will be designed, modeled, and implemented in the laboratory. This will require specific advances in the isolation of aptamers (DNA sequences that exhibit particular binding affinity to one or more target non-nucleic acid molecules) and in their integration into molecular computing systems. In this context, the aptamer will serve as an interface that allows a rationally-designed DNA-based molecular computing system to use small molecules as input signals. Furthermore, computational modeling and simulation will be used to predict and optimize interactions between DNA aptamers and a range of binding targets, and to choose optimal aptamer combinations to produce cross-reactive multi-sensor arrays capable of discriminating between target ligands by effectively projecting the signal into a multi-dimensional aptamer response space. Furthermore, advanced molecular circuit architectures capable of adaptive, bio-inspired behavior, such as dynamic learning and adaptation, will be designed, with a view to future experimental implementations of these features in large-scale molecular computers. This will include research on highly recurrent, bio-inspired information processing networks to extract meaningful responses from potentially non-specific aptamer-based sensors.
分子计算是一种在纳米尺度上评价计算功能的有前途的计算范式,在智能分子诊断和治疗中具有潜在的应用。分子计算系统包括生物分子,例如DNA链,其被设计为通过结合到某些输入分子来检测它们,并且随后经历用于基于所观察到的输入分子的模式来计算逻辑函数的化学反应的编程序列。例如,一个分子系统,需要它的两个输入同时存在,以产生一个输出信号将被称为计算一个逻辑“与”功能的两个输入。然而,尽管在该领域的最新进展,直接应用这些技术来解决现实世界中的问题的前景是有限的分子计算机和生物和化学系统之间缺乏强大的接口。该项目将通过针对两个特定的应用领域来解决这一限制:使用分子逻辑级联的广谱化学传感和细胞表面分析。通过计算机科学家、生物工程师、化学家和计算机工程师的跨学科研究组合,将推进分子计算机设计、建模和实现的最新技术水平,拟议活动的成功完成将是朝着常规部署分子计算机以解决化学和生物传感中的现实问题迈出的重要一步。在该项目中,将在实验室中设计、模拟和实现处理来自化学传感器和细胞表面分析反应的传感器输入的分子电路结构。这将需要在适体(对一个或多个目标非核酸分子表现出特定结合亲和力的DNA序列)的分离以及将其整合到分子计算系统中方面取得具体进展。在这种情况下,适体将作为一个接口,允许合理设计的基于DNA的分子计算系统使用小分子作为输入信号。此外,计算建模和模拟将用于预测和优化DNA适体和一系列结合靶之间的相互作用,并选择最佳适体组合以产生交叉反应的多传感器阵列,该阵列能够通过有效地将信号投射到多维适体响应空间中来区分靶配体。此外,先进的分子电路架构,能够适应,生物启发的行为,如动态学习和适应,将被设计,着眼于未来的实验实施这些功能的大规模分子计算机。这将包括对高度重复的、生物启发的信息处理网络的研究,以从潜在的非特异性适体传感器中提取有意义的反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Milan Stojanovic其他文献
Chronic cognitive sequelae after traumatic brain injury are not related to growth hormone deficiency in adults
成人创伤性脑损伤后的慢性认知后遗症与生长激素缺乏无关
- DOI:
10.1111/j.1468-1331.2009.02910.x - 发表时间:
2010 - 期刊:
- 影响因子:5.1
- 作者:
Dragan M. Pavlović;S. Pekic;Milan Stojanovic;V. Zivkovic;B. Djurović;V. Jovanović;N. Miljic;M. Medic;M. Doknic;D. Miljić;M. Djurovic;F. Casanueva;V. Popović - 通讯作者:
V. Popović
Does the addition of ketorolac and dexamethasone to lidocaine intravenous regional anesthesia improve postoperative analgesia and tourniquet tolerance for ambulatory hand surgery?
利多卡因静脉局部麻醉中添加酮咯酸和地塞米松是否可以改善门诊手部手术的术后镇痛和止血带耐受性?
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:3.2
- 作者:
Radmilo Jankovic;Visnjic Mm;Dragan Milic;Milan Stojanovic;Djordjevic Dr;M. Pavlovic - 通讯作者:
M. Pavlovic
Microfluidic Isolation of Aptamers with Affinity towards Multiple Myeloma Monoclonal Immunoglobulins (M-Ig)
对多发性骨髓瘤单克隆免疫球蛋白 (M-Ig) 具有亲和力的适体的微流体分离
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Timothy R. Olsen;Claudia Tapia;Milan Stojanovic;T. Worgall;Qiao Lin - 通讯作者:
Qiao Lin
Milan Stojanovic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Milan Stojanovic', 18)}}的其他基金
SHF: Collaborative Research: Biocompatible I/O Interfaces for Robust Bioorthogonal Molecular Computing
SHF:协作研究:用于稳健生物正交分子计算的生物相容性 I/O 接口
- 批准号:
1763632 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CDI-Type I: Collaborative Research: Supervised Learning in Molecular Classifiers
CDI-I 型:协作研究:分子分类器中的监督学习
- 批准号:
1026592 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CDI-Type II: Computing with Biomolecules; From Network Motifs to Complex and Adaptive Systems
CDI-Type II:生物分子计算;
- 批准号:
1026591 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Sensing in Living Cells: Expressable RNA-based FRET Probes
活细胞中的传感:基于 RNA 的可表达 FRET 探针
- 批准号:
1033288 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Proposal: EMT/MISC Behavior Based Molecular Robotics
合作提案:基于 EMT/MISC 行为的分子机器人
- 批准号:
0829744 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: EMT/MISC: Making Molecular Computation Practical for Biodetection Applications
合作研究:EMT/MISC:使分子计算在生物检测应用中切实可行
- 批准号:
0829793 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Enzymatic Networks for Pattern Recognition: Basic Principles and Applications
用于模式识别的酶网络:基本原理和应用
- 批准号:
0726586 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
EMT: Cell Death by Boolean Calculations with Antibodies
EMT:用抗体进行布尔计算的细胞死亡
- 批准号:
0621600 - 财政年份:2006
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
BIC: EMT: Cooperative and Adaptive Behaviors By Molecular Robots
BIC:EMT:分子机器人的合作和适应性行为
- 批准号:
0523317 - 财政年份:2005
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: CBC: Center for Molecular Cybernetics
合作研究:CBC:分子控制论中心
- 批准号:
0533096 - 财政年份:2005
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SHF: Large: Collaborative Research: Molecular computing for the real world
SHF:大型:协作研究:现实世界的分子计算
- 批准号:
1832985 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
SHF: Large: Collaborative Research: Next Generation Communication Mechanisms exploiting Heterogeneity, Hierarchy and Concurrency for Emerging HPC Systems
SHF:大型:协作研究:利用新兴 HPC 系统的异构性、层次结构和并发性的下一代通信机制
- 批准号:
1565336 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SHF: Large: Collaborative Research: Next Generation Communication Mechanisms exploiting Heterogeneity, Hierarchy and Concurrency for Emerging HPC Systems
SHF:大型:协作研究:利用新兴 HPC 系统的异构性、层次结构和并发性的下一代通信机制
- 批准号:
1565414 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SHF: Large: Collaborative Research: Exploiting the Naturalness of Software
SHF:大型:协作研究:利用软件的自然性
- 批准号:
1723215 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
SHF: Large: Collaborative Research: Next Generation Communication Mechanisms exploiting Heterogeneity, Hierarchy and Concurrency for Emerging HPC Systems
SHF:大型:协作研究:利用新兴 HPC 系统的异构性、层次结构和并发性的下一代通信机制
- 批准号:
1565431 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SHF: Large: Collaborative Research: Molecular computing for the real world
SHF:大型:协作研究:现实世界的分子计算
- 批准号:
1518833 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
SHF: Large: Collaborative Research: Molecular computing for the real world
SHF:大型:协作研究:现实世界的分子计算
- 批准号:
1518723 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant