IBSS: Agent-Based Model of the Role of Perceptions in Income Tax Evasion
IBSS:基于代理的所得税逃税认知作用模型
基本信息
- 批准号:1519116
- 负责人:
- 金额:$ 60.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This interdisciplinary research project will advance basic understanding of how tax compliance behavior emerges by focusing on how perceptions of risk and tax fairness form, how these perceptions spread through a social network, and the interplay caused by the complex feedback loops among individual behaviors and population-level outcomes. The project also will address how audit, penalty, and taxation policies, and changes in those policies, influence perceptions and ultimately reduce tax evasion. The project will provide new insights regarding how tax compliance behavior is modified by the perceived aggregated compliance and on how behavior and the perceived aggregated compliance depend on social network structure over which perceptions of taxation spreads. The project will demonstrate the utility of the use of agent-based modeling for research on interactions between individuals and governments as well as how data from the American Life Panel collected by Rand Corporation can be employed to address problems like this. The analysis also will have practical utility, because it will shed light on why certain countries with high taxation levels, such as Scandinavian nations, can maintain high levels of tax compliance while other countries with lower taxation levels may have high levels of tax evasion as is the case in Greece and Italy. Project findings therefore should help nations like the United States reduce the occurrence of tax evasion. Income tax evasion is a problem that poses considerable challenges for tax authorities and governments at the local, state, and federal levels. Its causes and implications are both economic and social. The role of tax evasion-related perceptions and how social networks influence those perceptions remain poorly understood, however. The investigators will build an agent-based computational simulation model of income tax evasion. Within the simulation, the compliance behavior of individuals will change through an adaptation process based on their past experiences with audits and tax evasion penalties, their perception of the fairness in taxation rates, and social interactions with people in their social networks. In conjunction, the investigators will conduct a national survey on the perceptions of tax fairness. The survey will gather individual-level data that will inform the simulation model's behavioral mechanisms. These mechanisms influence the propensity to evade, and the survey provides an empirical basis for choosing model-specific parameter values. Model assumptions will further be informed using sensitivity analyses. The simulation model will be validated and calibrated to reproduce U.S. national levels of income tax compliance for different tax brackets. In addition to the U.S., the model also will be calibrated using data sets and compliance levels for Greece and Denmark. Once calibrated, the model will be used to understand how tax evasion behaviors evolve differently depending on various starting assumptions, such as how social networks are structured or what fiscal policies are in place and the conditions for the system to produce tipping point dynamics. The model then will be used to identify fiscal policies that are most effective in minimize tax evasion and recovering compliance. The investigators will employ robust decision making, a method for improving policy decision making, to rank policies based both on their potential performance, as well as how robust this performance is to the key sources of uncertainty. This project is supported through the NSF Interdisciplinary Behavioral and Social Sciences Research (IBSS) competition.
这个跨学科的研究项目将推进税收合规行为如何出现的基本理解,重点关注风险和税收公平的看法如何形成,这些看法如何通过社会网络传播,以及个人行为和人口水平结果之间复杂的反馈回路所造成的相互作用。 该项目还将探讨审计、处罚和税收政策以及这些政策的变化如何影响人们的看法,并最终减少逃税。 该项目将提供新的见解,关于税收合规行为是如何修改的感知汇总遵守和行为和感知汇总遵守如何依赖于社会网络结构,税收的看法蔓延。 该项目将展示使用基于代理的建模研究个人和政府之间的相互作用,以及如何从美国生活小组收集的数据兰德公司可以用来解决这样的问题的效用。 该分析也将具有实用性,因为它将阐明为什么某些税收水平高的国家,如斯堪的纳维亚国家,可以保持高水平的税收合规,而其他税收水平较低的国家可能存在高水平的逃税行为,如希腊和意大利。 因此,项目的调查结果应该有助于像美国这样的国家减少逃税的发生。 所得税逃税是一个对地方、州和联邦各级税务机关和政府构成相当大挑战的问题。其原因和影响既有经济方面的,也有社会方面的。然而,人们对逃税相关观念的作用以及社交网络如何影响这些观念仍然知之甚少。 研究人员将建立一个基于代理的计算模拟模型的所得税逃税。 在模拟中,个人的合规行为将根据他们过去的审计和逃税处罚经验、他们对税率公平性的看法以及与社交网络中的人的社交互动,通过适应过程发生变化。 同时,调查人员将对税收公平的看法进行全国调查。 该调查将收集个人层面的数据,这些数据将为模拟模型的行为机制提供信息。 这些机制的影响,逃避的倾向,调查提供了一个实证基础,选择模型的具体参数值。将使用敏感性分析进一步了解模型假设。将对模拟模型进行验证和校准,以再现美国不同税级的所得税合规水平。 除了美国之外,该模型还将使用希腊和丹麦的数据集和遵守水平进行校准。一旦校准,该模型将被用来了解逃税行为如何根据各种初始假设而不同地演变,例如社交网络是如何构建的,或者制定了什么样的财政政策,以及系统产生临界点动态的条件。 然后,该模型将被用来确定最有效地减少逃税和恢复遵守的财政政策。研究人员将采用稳健的决策,一种改进政策决策的方法,根据政策的潜在表现以及这种表现对不确定性的关键来源的稳健程度对政策进行排名。 该项目通过NSF跨学科行为和社会科学研究(IBSS)竞赛获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raffaele Vardavas其他文献
The value of environmental surveillance for pandemic response
- DOI:
10.1038/s41598-024-79952-5 - 发表时间:
2024-11-22 - 期刊:
- 影响因子:3.900
- 作者:
Pedro Nascimento de Lima;Sarah Karr;Jing Zhi Lim;Raffaele Vardavas;Derek Roberts;Abigail Kessler;Jalal Awan;Laura J. Faherty;Henry H. Willis - 通讯作者:
Henry H. Willis
Raffaele Vardavas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于Agent的自动化渗透测试技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI Agent赋能中小企业智能决策系统研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
计算机控制Agent在可交互式企业征信报告生成的应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
大模型Agent驱动的AI制药关键技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
混合多元区域情境下多Agent的自主协同决策方法研究
- 批准号:62306099
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于操控员情境意识状态可解释Agent的智能交互触发机制研究
- 批准号:62376220
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于多Agent仿真模型的新能源汽车市场渗透研究
- 批准号:2023JJ60196
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向联排联调的城市复合洪涝灾害风险Agent建模与智能决策
- 批准号:42371092
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
实施科学驱动Agent仿真构建脑卒中患者心理与行为干预规程——基于阶梯式楔形随机对照试验
- 批准号:82260281
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于Agent 技术的职业高校校企协同创新主体行为建模研究
- 批准号:2021JJ60029
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Applying a complex systems perspective to investigate the relationship between choreography and agent-based modeling as tools for scientific sense-making
应用复杂系统的视角来研究编排和基于代理的建模之间的关系,作为科学意义构建的工具
- 批准号:
2418539 - 财政年份:2024
- 资助金额:
$ 60.58万 - 项目类别:
Continuing Grant
Implementing and Iterating WeWALK’s Agent-Based Guidance System (WeASSIST) in Rail Transport to Improve Visually Impaired Customer Experience
在铁路运输中实施和迭代 WeWALK 基于代理的引导系统 (WeASSIST),以改善视障客户体验
- 批准号:
10098144 - 财政年份:2024
- 资助金额:
$ 60.58万 - 项目类别:
Collaborative R&D
Normative Analysis of Variety of Disruptive Innovation Processes by Agent-Based Models
基于代理的模型对各种颠覆性创新过程的规范分析
- 批准号:
23H00853 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Probabilistic Agent-Based Modelling for Predicting School Attendance
用于预测入学率的基于概率代理的建模
- 批准号:
2887257 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Studentship
Sharing the Road: Exploring transitions away from private vehicle ownership through agent-based modelling
共享道路:通过基于代理的建模探索从私人车辆所有权的转变
- 批准号:
2887300 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Studentship
eMB: Bridging the Gap Between Agent Based Models of Complex Biological Phenomena and Real-World Data Using Surrogate Models
eMB:使用代理模型弥合基于代理的复杂生物现象模型与真实世界数据之间的差距
- 批准号:
2324818 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Standard Grant
Emergence transparency for enterprise agent-based models
基于企业代理的模型的出现透明度
- 批准号:
10066332 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Collaborative R&D
Water-based liquid embolic agent for the treatment of vascular rich tumors
用于治疗富含血管肿瘤的水基液体栓塞剂
- 批准号:
10766633 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Local labor market contexts and substance use in young and middle adulthood: Using agent-based modeling to guide substance use prevention strategies
当地劳动力市场环境和青壮年的物质使用:使用基于主体的模型来指导物质使用预防策略
- 批准号:
10740252 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Implementation of an agent-based urban freight model and simulation analysis
基于Agent的城市货运模型的实现及仿真分析
- 批准号:
23K13421 - 财政年份:2023
- 资助金额:
$ 60.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists