RUI: A Search for Long-Range Spin-Spin Interactions and Thallium-Fluoride Investigations

RUI:寻找长程自旋-自旋相互作用和氟化铊研究

基本信息

  • 批准号:
    1519265
  • 负责人:
  • 金额:
    $ 48.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Elementary particles have an intrinsic property called spin--they act as if they were constantly spinning around like tops. Just as a tops precess in the presence of gravity, the spins of fundamental particles precess in a magnetic field. This precession is the basis of nuclear magnetic resonance which is the underlying physics used in the medical diagnostic known as magnetic resonance imaging (MRI). Recently developed precision optical techniques have allowed the study of interactions with particle spins with unprecedented precision. The researchers will use these precision techniques as tools to investigate the fundamental forces and symmetries of nature. At the most basic level, our present understanding of nature is summarized in the "Standard Model' of particle physics. This model requires four fundamental forces (gravitational, electromagnetic, strong and weak) to describe all of reality as it is presently known. In one experiment, the investigators will look for a new long-range force between particle spins that can't be described by the Standard Model. To optimize their search, they will measure the interaction of their laboratory spins with the sum of all of the electron spins within the Earth. In their other experiment, the researchers hope eventually to see if the fundamental laws of nature might be asymmetric in time. This breaking of "time symmetry" can be studied by looking for the precession of a nuclear spin in an electric field. Here the experimental sensitivity can be increased by using a very cold beam of molecules. Additional time asymmetry (beyond that which has already been observed) is believed to be necessary to explain the existence of our universe. Without time-reversal violation, our universe would have produced equal amounts of matter and anti-matter. Their mutual annihilation would not have allowed for the formation of galaxies, stars, planets and life. Recently, the researchers created the first map of the electron-spin density within the Earth. These "geo-electrons" constitute the largest polarized spin source known. Precision measurement of spin-precession frequencies in laboratories at the surface of the Earth as a function of their applied magnetic-field direction, allows one to look for long-range spin-spin interactions (LRSSI) between the geo-electrons and the laboratory spins. In the first proposed experiment, a refined spin-precession apparatus will be constructed which is both well calibrated and relatively immune to AC light effects. This should allow at least an order of magnitude improvement in the sensitivity of these measurements to LRSSI. If an effect is seen it would suggest the existence of a new force of nature. In current models this force might be associated with an ultra-light vector meson, a "dark" photon, the "unparticle," or torsion gravity. In the second proposed experiment, critical parameters that determine the viability of an electric-dipole moment (edm) experiment in thallium fluoride (TlF) will be investigated using an ultraviolet laser and a cold molecular source. Specifically, the researchers hope to demonstrate the existence of a cycling transition in TlF and to measure the efficiency with which TlF can be ablated from a surface. If the results of these measurements are favorable, TlF will then be proposed as a candidate system for a cold-beam precision measurement of the edm of the thallium nucleus. The discovery of a permanent nuclear edm would imply a violation of time symmetry and could help explain the existence of our matter-dominated universe.
基本粒子有一种内在的性质,叫做自旋--它们的行为就像陀螺一样不停地旋转。 就像陀螺在重力作用下的进动一样,基本粒子的自旋在磁场中也会进动。 这种进动是核磁共振的基础,核磁共振是用于医学诊断的基础物理学,称为磁共振成像(MRI)。 最近发展的精密光学技术使研究粒子自旋的相互作用具有前所未有的精度。 研究人员将使用这些精密技术作为工具来研究自然界的基本力和对称性。 在最基本的层面上,我们目前对自然的理解可以概括为粒子物理学的“标准模型”。 这个模型需要四种基本力(引力、电磁力、强力和弱力)来描述目前已知的所有现实。 在一个实验中,研究人员将寻找粒子自旋之间的一种新的长程力,这种力不能用标准模型来描述。 为了优化他们的搜索,他们将测量他们的实验室自旋与地球内所有电子自旋之和的相互作用。 在他们的另一个实验中,研究人员希望最终看到自然的基本定律是否在时间上是不对称的。 这种“时间对称性”的破缺可以通过观察电场中原子核自旋的进动来研究。 在这里,可以通过使用非常冷的分子束来增加实验灵敏度。 额外的时间不对称性(超过已经观察到的时间不对称性)被认为是解释我们宇宙存在的必要条件。 如果没有时间逆转违反,我们的宇宙就会产生等量的物质和反物质。 它们的相互湮灭不可能形成星系、恒星、行星和生命。最近,研究人员绘制了地球内部电子自旋密度的第一张地图。 这些“地球电子”构成了已知的最大的极化自旋源。 在地球表面的实验室中精确测量自旋进动频率作为其施加的磁场方向的函数,允许人们寻找地球电子和实验室自旋之间的远程自旋-自旋相互作用(LRSSI)。 在第一个提出的实验中,一个完善的自旋进动装置将被构造,这是很好的校准和相对免疫AC光效应。 这应该允许这些测量对LRSSI的灵敏度至少提高一个数量级。 如果看到一种效应,那就意味着一种新的自然力的存在。 在目前的模型中,这种力可能与超轻矢量介子、“暗”光子、“非粒子”或扭转引力有关。 在第二个拟议的实验中,将使用紫外激光和冷分子源研究决定氟化铊电偶极矩实验可行性的关键参数。 具体来说,研究人员希望证明TlF中存在循环转变,并测量TlF可以从表面烧蚀的效率。 如果这些测量的结果是有利的,那么TlF将被提议作为冷束精密测量铊核电火花加工的候选系统。 永久性核edm的发现意味着违反了时间对称性,并可能有助于解释我们物质主导的宇宙的存在。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Larry Hunter其他文献

Design and Analysis of Interactions with Museum Exhibits
博物馆展品互动的设计与分析
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yoshinobu Kano;Makoto Miwa;Kevin Cohen;Larry Hunter;Sophia Ananiadou and Jun'ichi Tsujii;Takashi Kiriyama
  • 通讯作者:
    Takashi Kiriyama
Gating effects along mitral cell lateral dendrites
  • DOI:
    10.1186/1471-2202-8-s2-p107
  • 发表时间:
    2007-07-06
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Thomas McTavish;Larry Hunter;Nathan Schoppa;Diego Restrepo
  • 通讯作者:
    Diego Restrepo

Larry Hunter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Larry Hunter', 18)}}的其他基金

PM: RUI: Searching for Optical Cycling in TlF and Long-Range Spin-Spin Interactions
PM:RUI:寻找 TlF 和长程自旋-自旋相互作用中的光学循环
  • 批准号:
    2110523
  • 财政年份:
    2021
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Standard Grant
RUI: A Search for Long-Range Spin-Spin Interactions and Optical Forces in TlF
RUI:在 TlF 中寻找长程自旋-自旋相互作用和光学力
  • 批准号:
    1806297
  • 财政年份:
    2018
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Standard Grant
RUI: A Hg-Cs LLI Search and the Prospects for Laser Cooling TlF
RUI:Hg-Cs LLI 搜索和激光冷却 TlF 的前景
  • 批准号:
    1205824
  • 财政年份:
    2012
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Continuing Grant
RUI: Searching for Preferred Directions in Space and Time
RUI:在空间和时间中寻找首选方向
  • 批准号:
    0855465
  • 财政年份:
    2009
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Continuing Grant
LLI and Solid State electron edm searches
LLI 和固态电子 edm 搜索
  • 批准号:
    0555715
  • 财政年份:
    2006
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Continuing Grant
RUI: Tests of Fundamenal Symmetries using Hg, Cs and GdIG
RUI:使用 Hg、Cs 和 GdIG 进行基本对称性测试
  • 批准号:
    0244913
  • 财政年份:
    2003
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Continuing Grant
RUI: Refined Tests of Fundamental Symmetries
RUI:基本对称性的精细测试
  • 批准号:
    9987863
  • 财政年份:
    2000
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Continuing Grant
RUI: Measurement of the Electron ELectric-Dipole Moment Using Cs and Rb Magnetometers
RUI:使用 Cs 和 Rb 磁力计测量电子偶极矩
  • 批准号:
    9722611
  • 财政年份:
    1997
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Continuing Grant
Tests of Fundamental Laws Using Precise Cesium and Hg Magnetometers
使用精密铯和汞磁力计测试基本定律
  • 批准号:
    9402701
  • 财政年份:
    1994
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Continuing Grant
RUI: A Search for an Electric Dipole Moment of the Electron(Physics)
RUI:寻找电子的电偶极矩(物理)
  • 批准号:
    9102945
  • 财政年份:
    1991
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Continuing Grant

相似海外基金

Research on anomalous metal states and search for long-range order and novel quantum states in quasicrystals
反常金属态研究及寻找准晶中的长程有序和新型量子态
  • 批准号:
    22H01167
  • 财政年份:
    2022
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Search for the time-variation of the fundamental physical constant by long-term operation of an optical lattice clock using a light-controlled slow atomic beam source
通过使用光控慢原子束源的光学晶格钟的长期运行来搜索基本物理常数的时间变化
  • 批准号:
    22K04942
  • 财政年份:
    2022
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
AN Underground Belayed In-Shaft experiment to search for long-lived particles using LHC service shafts at CERN
欧洲核子研究中心利用大型强子对撞机服务井进行地下保护井内实验,寻找长寿命粒子
  • 批准号:
    MR/V023098/1
  • 财政年份:
    2022
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Fellowship
Research and development of an electromagnetic calorimeter to search for long-lived particle having GeV mass
研究和开发电磁量热仪以寻找具有GeV质量的长寿命粒子
  • 批准号:
    22H01248
  • 财政年份:
    2022
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Search for early biomarkers of cognitive decline: analysis of extracellular vesicles using samples from a long-term longitudinal study
寻找认知能力下降的早期生物标志物:使用长期纵向研究的样本分析细胞外囊泡
  • 批准号:
    20K11664
  • 财政年份:
    2020
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Search for exotic long lived particles with the ATLAS detector at the LHC
使用 LHC 的 ATLAS 探测器寻找奇异的长寿命粒子
  • 批准号:
    2424101
  • 财政年份:
    2020
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Studentship
Development of Y-band solid-state astro-comb with long-term stability for exoplanet search
开发具有长期稳定性的Y波段固态天文梳用于系外行星搜索
  • 批准号:
    20K05357
  • 财政年份:
    2020
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Search for long-lived particles produced in pp collisions at \sqrt(s) = 13 TeV using the ATLAS muon spectrometer
使用 ATLAS μ 子光谱仪搜索 sqrt(s) = 13 TeV 处 pp 碰撞中产生的长寿命粒子
  • 批准号:
    2441207
  • 财政年份:
    2020
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Studentship
Search for the regulatory mechanism of mitochondria by microRNA and long noncoding RNAs
利用microRNA和长链非编码RNA寻找线粒体的调控机制
  • 批准号:
    20K08266
  • 财政年份:
    2020
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Search Strategy for Unknown Space Objects for the Long-term Sustainability of Outer Space Activities
外层空间活动长期可持续性的未知空间物体搜索策略
  • 批准号:
    20H02355
  • 财政年份:
    2020
  • 资助金额:
    $ 48.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了