OP: Collaborative Research: Quantum Zeno Photonics on Chip

OP:合作研究:片上量子芝诺光子学

基本信息

  • 批准号:
    1521424
  • 负责人:
  • 金额:
    $ 26.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-02-28
  • 项目状态:
    已结题

项目摘要

Abstract Title: Quantum Zeno Photonics on Chip for Scalable Optics and Photonics TechnologiesNontechnical Abstract: Advanced optics and photonics technologies deploying ultralow-intensity light beams, such as a single or few photons, promise to create revolutionary architectures for communications, computation, sensing, and many other applications. To develop such technologies, robust tools for generation and processing of photonic signals are highly desirable. Thus far, encouraging progress has been made in demonstrating the principle of their operation. However, the existing approaches suffer from fundamental challenges' such as stochasticity in photon emission and quantum-state decoherence' and technical difficulties, like a large setup volume and the need for cryogenic housing. Those issues have constituted a major road block towards commencing societally-impactful photonic technologies for which device scalability and mass productivity are a prerequisite. This project seeks to address this problem by marrying quantum Zeno blockade, which corresponds to a rather unexplored regime of operation in nonlinear optics, with a newly developed photonic circuiting technique for hydrogenated amorphous silicon of exceptional optical properties. Built upon solid experimental and theoretical grounds, this research is expected to deliver highly integrated, mass producible devices for practical photonic applications and all-optical information processing. The project will be carried out collaboratively by researchers from physics at Stevens Institute of Technology and electrical and computer engineering at Johns Hopkins University. Knowledge gained through this interdisciplinary project will be disseminated onto many areas of education, including through the STEM Achievement in Baltimore Elementary Schools outreach program for grades 3-5, and through Stevens Technical Enrichment Program focusing on college students from low income and under-represented groups. Technical Abstract:This proposal introduces quantum Zeno blockade' a Zeno effect in nonlinear optics' into scalable nano-photonic systems, thereby developing a practical platform for advanced optics and photonics technologies. The Zeno effect is a counterintuitive phenomenon dictated by the measurement postulate of quantum mechanics. Its previous studies often served to illustrate the peculiar nature of quantum mechanics but had little practical relevance. Exploiting an emerging multilayer-integrated photonic circuiting technique for hydrogenated-amorphous silicon, this project will explore optically-reconfigurable, Zeno-based photonic processing on chip. Owing to the outstanding optical properties of hydrogenated-amorphous silicon, new photonic devices will be developed that have exceptionally large nonlinearity, low loss, suppressed background noise, and reduced two-photon absorption and free-carrier effects. Through quantum Zeno blockade, an "interaction-free" quantum logical gate will be realized deterministically (e.g., without using post selection) between single photons that never physically overlap. This exotic realization eliminates the detrimental phase noise and quantum state decoherence usually present in competing photonic devices, making it particularly appealing for scalable quantum computing. The same effect can disrupt high-order dynamics during parametric photon-pair scattering, thereby generating pure single and entangled photons on demand. On chip, room temperature, and uniquely multilayer-integrated, the proposed devices are particularly promising for large-scale quantum applications built on highly-integrated photonics.
摘要:先进的光学和光子学技术部署了超低强度光束,如单个或几个光子,有望为通信、计算、传感和许多其他应用创造革命性的架构。为了发展这样的技术,产生和处理光子信号的强大工具是非常需要的。迄今为止,在展示其运作原则方面取得了令人鼓舞的进展。然而,现有的方法面临着基本的挑战,如光子发射的随机性和量子态退相干,以及技术上的困难,如大的安装体积和对低温外壳的需求。这些问题构成了开始具有社会影响的光子技术的主要障碍,而设备可扩展性和大规模生产力是光子技术的先决条件。这个项目试图通过结合量子芝诺封锁来解决这个问题,量子芝诺封锁对应于非线性光学中一个相当未开发的操作机制,与一种新开发的具有特殊光学特性的氢化非晶硅的光子电路技术相结合。基于坚实的实验和理论基础,本研究有望为实际光子应用和全光信息处理提供高度集成、可批量生产的设备。该项目将由史蒂文斯理工学院物理学和约翰霍普金斯大学电子和计算机工程的研究人员合作进行。通过这个跨学科项目获得的知识将传播到许多教育领域,包括通过巴尔的摩小学3-5年级的STEM成就推广计划,以及通过史蒂文斯技术浓缩计划,重点关注来自低收入和代表性不足群体的大学生。技术摘要:本提案将量子芝诺阻塞“非线性光学中的芝诺效应”引入可扩展的纳米光子系统,从而为先进光学和光子学技术开发一个实用平台。芝诺效应是一种由量子力学的测量假设所决定的反直觉现象。它以前的研究经常用来说明量子力学的特殊性质,但几乎没有实际意义。利用一种新兴的氢化非晶硅多层集成光子电路技术,该项目将探索光学可重构、基于芝诺的芯片光子处理。由于氢化非晶硅优异的光学性能,新型光子器件将具有特别大的非线性、低损耗、抑制背景噪声、减少双光子吸收和自由载流子效应。通过量子芝诺封锁,一个“无相互作用”的量子逻辑门将在从未物理重叠的单个光子之间确定性地实现(例如,不使用后选择)。这种奇特的实现消除了通常存在于竞争光子器件中的有害相位噪声和量子态退相干,使其对可扩展量子计算特别有吸引力。同样的效应可以在参数光子对散射过程中破坏高阶动力学,从而根据需要产生纯单光子和纠缠光子。在片上,室温和独特的多层集成,所提出的器件特别有希望建立在高度集成光子学上的大规模量子应用。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuping Huang其他文献

The effects of Hcy on the expression and the methylation status in promoter region of estrogen receptor alpha; gene
Hcy对雌激素受体启动子区表达及甲基化状态的影响
Linking the low-density lipoprotein receptor-binding segment enables the therapeutic 5-YHEDA peptide to cross the blood-brain barrier and scavenge excess iron and radicals in the brain of senescent mice
连接低密度脂蛋白受体结合片段使治疗性 5-YHEDA 肽能够穿过血脑屏障并清除衰老小鼠大脑中多余的铁和自由基
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenyou Zou;S. Shao;Ruyi Zou;Jini Qi;Liguan Chen;Hui Zhang;Qiqiong Shen;Yue Yang;Liman Ma;R. Guo;Hongwen Li;Haibo Tian;Pengxin Li;Mingfang Yu;Lu Wang;Wen;Caiyu Li;Zhenhai Yu;Yuping Huang;Li Chen;Qi Shao;Xinyan Gao;Xiaolin Chen;Zhengbo Zhang;Jianguo Yan;Xiaoyun Shao;Ru Pan;Lu Xu;Jing Fang;Lei Zhao;Yaohui Huang;Anqi Li;Yuchong Zhang;Wenkao Huang;Kechun Tian;Min;Li;Lingbin Wu;Yuehua Wu;Zhen Luo;Wenxin Xiao;Shanshan Ma;Jia;Kaixin Huang;Siyuan He;Fan Yang;Shuni Zhou;Mo Jia;Hui Zhang;Hongsheng Lu;Xinjuan Wang;Jie Tan
  • 通讯作者:
    Jie Tan
Applications of optical property measurement for quality evaluation of agri-food products: a review
  • DOI:
    10.1080/10408398.2023.2255260
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
  • 作者:
    Dong Hu;Tianze Jia;Xiaolin Sun;Tongtong Zhou;Yuping Huang;Zhizhong Sun;Chang Zhang;Tong Sun;Guoquan Zhou
  • 通讯作者:
    Guoquan Zhou
A clustering based multi-objective optimization approach for V2G service operation scheduling
Ablation and Ionization Phenomenon in a Teflon Pulsed Plasma Thruster
聚四氟乙烯脉冲等离子体推进器中的烧蚀和电离现象
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lei Yang;Yuping Huang;Hai;Xiangyang Liu
  • 通讯作者:
    Xiangyang Liu

Yuping Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuping Huang', 18)}}的其他基金

Collaborative Research: Parity-Time Symmetry and Anti-Symmetry in Quantum Optics
合作研究:量子光学中的宇称时间对称性和反对称性
  • 批准号:
    1806523
  • 财政年份:
    2018
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Continuing Grant
RAISE-EQuIP: A Chip-integrated Platform for Photon-Efficient Quantum Communications
RAISE-EQuIP:光子高效量子通信的芯片集成平台
  • 批准号:
    1842680
  • 财政年份:
    2018
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
  • 批准号:
    2127235
  • 财政年份:
    2021
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
  • 批准号:
    2114312
  • 财政年份:
    2021
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Standard Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
  • 批准号:
    2127331
  • 财政年份:
    2021
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
  • 批准号:
    2114304
  • 财政年份:
    2021
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Development of Advanced Image Reconstruction Methods for Pre-Clinical Applications of Photoacoustic Computed Tomography
OP:合作研究:光声计算机断层扫描临床前应用的先进图像重建方法的开发
  • 批准号:
    1938702
  • 财政年份:
    2019
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Nanoscale Synthesis, Characterization and Modeling of Rationally Designed Plasmonic Materials and Architectures
OP:合作研究:合理设计的等离子体材料和结构的纳米级合成、表征和建模
  • 批准号:
    1709601
  • 财政年份:
    2017
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Active Speckle Control and Fast Speckle Statistics to Drastically Improve the Contrast Ratio of Exoplanet Direct Imaging
OP:协作研究:主动散斑控制和快速散斑统计显着提高系外行星直接成像的对比度
  • 批准号:
    1710514
  • 财政年份:
    2017
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Novel Feature-Based, Randomized Methods for Large-Scale Inversion
OP:协作研究:用于大规模反演的基于特征的新颖随机方法
  • 批准号:
    1720291
  • 财政年份:
    2017
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Nanoscale Synthesis, Characterization and Modeling of Rationally Designed Plasmonic Materials and Architectures
OP:合作研究:合理设计的等离子体材料和结构的纳米级合成、表征和建模
  • 批准号:
    1709275
  • 财政年份:
    2017
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Active Speckle Control and Fast Speckle Statistics to Drastically Improve the Contrast Ratio of Exoplanet Direct Imaging
OP:协作研究:主动散斑控制和快速散斑统计显着提高系外行星直接成像的对比度
  • 批准号:
    1710210
  • 财政年份:
    2017
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了