Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
基本信息
- 批准号:2114304
- 负责人:
- 金额:$ 42.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modern electronics are based on charge transport by electrons and holes in semiconductors. The behavior of carriers with excess energy, called “hot” carriers, is of particular interest. Hot-carrier materials have a broad range of applications including hydrogen production, local heating for nanotherapeutics, and photodetectors. Hot-carrier photodetectors show great promise due to their tunability and ultrafast response. Unfortunately, the low efficiencies of hot carrier materials have made them impractical for use in devices. The PIs have recently discovered that alloys of noble metals and transition metals have the potential to efficiently generate long-lived hot carriers, a breakthrough in the field. This project will investigate transition metal alloys and their ability to generate and efficiently transport above-equilibrium “hot” electrons and holes in an optoelectronic devices. The proposed work is expected to provide transformational advances in the efficiency of near-infrared hot-carrier photodetectors. Education and outreach for this project will teach students through research activities and will expose people of diverse ages and backgrounds to the concepts of alloying, metal-optics, and optoelectronics. The research team will involve graduate and undergraduate students to perform this research in the team's laboratories and partner with local middle and high schools to involve 6th through 12th-grade students in hands-on scientific work. High school students from local Baton Rouge high schools will participate in annual summer in-lab residency programs and middle-school students in the Philadelphia area will participate in a solar race by building, testing, and racing shoebox-sized solar powered cars. This project is jointly funded by the Electronic and Photonic Materials (EPM) and Metals and Metallic Nanostructures (MMN) programs of the Division of Materials Research.Hot-carrier generation in metals is a promising route to convert photons into electrical charges for near-infrared (NIR) optoelectronic devices. Hot-carrier optoelectronic devices offer below-bandgap charge generation, ultrafast response times, and spectral and polarization control. These features are expected to result in transformative advances in optoelectronics. However, current hot-carrier devices exhibit low efficiencies due to poor carrier generation and collection rates. Photoexcited metals can generate hot carriers via interband, intraband, and plasmon-assisted Landau damping. While noble metals have been extensively explored for generating hot carriers via interband transitions, NIR photons do not have enough energy to overcome their interband energy threshold. Intraband- and plasmon-driven hot-carrier generation can occur at these lower excitation energies, but only if additional momentum is provided. The research team hypothesizes that band hybridization in transition metal alloys will result in emergent properties and new pathways for NIR hot-carrier generation. The team recently reported that, when photoexcited at 1550 nm, an Au50Pd50 alloy having NIR accessible interband transitions exhibited 20-fold more 0.8 eV hot holes than pure Au and 3-times longer lifetime than pure Pd. The team will build on this exciting result by pursuing the following specific aims: 1). Use first-principles simulations to determine candidate transition metal alloys that excel at hot-carrier generation in the NIR, 2). Deposit alloy films via thermal co-evaporation and use resonant synchrotron-based photoemission to verify the predicted electronic properties, 3). Determine the effect alloying has on carrier lifetime using transient absorption spectroscopy and 4). Fabricate below-bandgap photoconductors using alloy absorbers and characterize their electrical response. The research team is well suited to pursue these aims with expertise in alloy theory, photoemission, metal film growth, device fabrication, and ultrafast spectroscopy. Transition metal alloys offer an exciting palette for synthesizing new hot-carrier materials, and the team is well-positioned to investigate their structure-function relationship.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代电子学是基于半导体中电子和空穴的电荷传输。具有过剩能量的载流子,即所谓的“热”载流子,其行为尤其令人感兴趣。热载流子材料具有广泛的应用,包括制氢、纳米治疗的局部加热和光电探测器。热载流子光电探测器因其可调谐和超快响应而显示出巨大的应用前景。不幸的是,热载流子材料的低效率使其在器件中的使用不切实际。PI最近发现贵金属和过渡金属的合金有可能有效地产生长寿命的热载流子,这是该领域的一项突破。这个项目将研究过渡金属合金及其在光电子器件中产生和有效传输高于平衡的“热”电子和空穴的能力。预计拟议的工作将在近红外热载流子光电探测器的效率方面取得变革性的进展。该项目的教育和推广将通过研究活动教授学生,并将使不同年龄和背景的人接触合金、金属光学和光电子学的概念。研究团队将邀请研究生和本科生在团队的实验室进行这项研究,并与当地初中和高中合作,让6年级到12年级的学生参与动手的科学工作。来自当地巴吞鲁日高中的高中生将参加一年一度的暑期实验室实习计划,费城地区的中学生将通过建造、测试和比赛鞋盒大小的太阳能汽车来参加太阳能竞赛。该项目由材料研究部电子与光子材料(EPM)和金属与金属纳米结构(MMN)计划联合资助。金属中的热载流子产生是将光子转化为电荷用于近红外(NIR)光电子器件的一种很有前途的方法。热载流子光电子器件提供带隙以下电荷产生、超快响应时间以及光谱和偏振控制。这些特点预计将导致光电子学的变革性进步。然而,由于较差的载流子产生和收集速率,当前的热载流子器件表现出低效率。光激发金属可以通过带间、带内和等离子体辅助朗道衰减产生热载流子。虽然贵金属已经被广泛探索通过带间跃迁产生热载流子,但近红外光子没有足够的能量来克服它们的带间能量阈值。在这些较低的激发能量下,带内和等离子体激元驱动的热载流子的产生可以发生,但前提是提供额外的动量。研究小组假设,过渡金属合金中的能带杂化将导致近红外热载流子产生的新性质和新途径。该团队最近报道,当在1550 nm处进行光激发时,具有近红外可达带间跃迁的Au50Pd50合金显示出比纯Au多20倍0.8 eV的热空穴,比纯Pd长3倍的寿命。该团队将在这一令人兴奋的结果的基础上,追求以下具体目标:1)。使用第一性原理模拟来确定在近红外光谱中擅长产生热载流子的候选过渡金属合金。通过热共蒸发沉积合金薄膜,并利用共振同步加速器光电子能谱对预测的电学性质进行验证。用瞬时吸收光谱确定合金化对载流子寿命的影响。利用合金吸收材料制备带隙以下光电导体,并对其电学响应进行表征。研究团队非常适合追求这些目标,他们拥有合金理论、光电发射、金属薄膜生长、器件制造和超快光谱方面的专业知识。过渡金属合金为合成新的热载流子材料提供了一个令人兴奋的调色板,该团队处于有利地位,可以调查它们的结构-功能关系。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin McPeak其他文献
Kevin McPeak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin McPeak', 18)}}的其他基金
PFI-TT: A Rapid Multi-Contaminant Degradation System for Water Wells
PFI-TT:水井多污染物快速降解系统
- 批准号:
2141162 - 财政年份:2022
- 资助金额:
$ 42.22万 - 项目类别:
Standard Grant
I-Corps: Chemical-Free Advanced Oxidation Water Treatment System
I-Corps:无化学品高级氧化水处理系统
- 批准号:
2111353 - 财政年份:2021
- 资助金额:
$ 42.22万 - 项目类别:
Standard Grant
MRI: Acquisition of a Near-Field Optical Microscope for Multidisciplinary Research and Education at Louisiana State University
MRI:路易斯安那州立大学购买近场光学显微镜用于多学科研究和教育
- 批准号:
2019094 - 财政年份:2020
- 资助金额:
$ 42.22万 - 项目类别:
Standard Grant
CAREER: OP: Ultraviolet Superchiral Light-Matter Interactions: Plasmonic Devices for Enhanced Structural Biology Characterization
职业:OP:紫外超手性光-物质相互作用:用于增强结构生物学表征的等离子体装置
- 批准号:
1653705 - 财政年份:2017
- 资助金额:
$ 42.22万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
- 批准号:
2127235 - 财政年份:2021
- 资助金额:
$ 42.22万 - 项目类别:
Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
- 批准号:
2114312 - 财政年份:2021
- 资助金额:
$ 42.22万 - 项目类别:
Standard Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
- 批准号:
2127331 - 财政年份:2021
- 资助金额:
$ 42.22万 - 项目类别:
Standard Grant
OP: Collaborative Research: Development of Advanced Image Reconstruction Methods for Pre-Clinical Applications of Photoacoustic Computed Tomography
OP:合作研究:光声计算机断层扫描临床前应用的先进图像重建方法的开发
- 批准号:
1938702 - 财政年份:2019
- 资助金额:
$ 42.22万 - 项目类别:
Standard Grant
OP: Collaborative Research: Nanoscale Synthesis, Characterization and Modeling of Rationally Designed Plasmonic Materials and Architectures
OP:合作研究:合理设计的等离子体材料和结构的纳米级合成、表征和建模
- 批准号:
1709601 - 财政年份:2017
- 资助金额:
$ 42.22万 - 项目类别:
Standard Grant
OP: Collaborative Research: Active Speckle Control and Fast Speckle Statistics to Drastically Improve the Contrast Ratio of Exoplanet Direct Imaging
OP:协作研究:主动散斑控制和快速散斑统计显着提高系外行星直接成像的对比度
- 批准号:
1710514 - 财政年份:2017
- 资助金额:
$ 42.22万 - 项目类别:
Standard Grant
OP: Collaborative Research: Novel Feature-Based, Randomized Methods for Large-Scale Inversion
OP:协作研究:用于大规模反演的基于特征的新颖随机方法
- 批准号:
1720291 - 财政年份:2017
- 资助金额:
$ 42.22万 - 项目类别:
Standard Grant
OP: Collaborative Research: Compatible Discretizations for Maxwell Models in Nonlinear Optics
OP:协作研究:非线性光学中麦克斯韦模型的兼容离散化
- 批准号:
1720116 - 财政年份:2017
- 资助金额:
$ 42.22万 - 项目类别:
Continuing Grant
OP: Collaborative Research: Nanoscale Synthesis, Characterization and Modeling of Rationally Designed Plasmonic Materials and Architectures
OP:合作研究:合理设计的等离子体材料和结构的纳米级合成、表征和建模
- 批准号:
1709275 - 财政年份:2017
- 资助金额:
$ 42.22万 - 项目类别:
Standard Grant
OP: Collaborative Research: Active Speckle Control and Fast Speckle Statistics to Drastically Improve the Contrast Ratio of Exoplanet Direct Imaging
OP:协作研究:主动散斑控制和快速散斑统计显着提高系外行星直接成像的对比度
- 批准号:
1710210 - 财政年份:2017
- 资助金额:
$ 42.22万 - 项目类别:
Standard Grant