Hemivariational Inequalities: Numerical Methods and Applications
半变分不等式:数值方法及应用
基本信息
- 批准号:1521684
- 负责人:
- 金额:$ 16.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Certain systems in physical sciences and engineering cannot be described by mathematical equations but are instead described by more complicated relations known as inequalities (stating that one quantity is greater than or smaller than another). Solving a system of inequalities numerically can be very challenging. This research project aims to develop a rigorous and comprehensive mathematical theory, as well as reliable and efficient numerical methods, for the numerical solution of a class known as hemivariational inequalities. In addition to the resultant advances in computational mathematics, the research will have impact in the petroleum industry through application to analysis of borehole pumping systems. Numerical simulations are used by the petroleum industry to infer the downhole oil pump conditions based on measured surface conditions. For deviated (non-vertical) oil wells, methods for reliable simulation have yet to be developed, mainly due to the complicated friction and dynamics in deviated wells. Appropriate models can be cast in the form of hemivariational inequalities; this research project is expected to facilitate practically useful numerical simulations for diagnostics of oil pump conditions in deviated wells. Collaboration with researchers in the petroleum industry will ensure the transfer of the new mathematical results to applications. The results from the project are expected to help correctly control downhole oil pumps to save energy and avoid pump damage. Graduate students will actively participate in all aspects of the research and will thus be trained in high level mathematics and numerical methods on challenging and important problems from applications. Inequality problems in mechanics can be divided into two main classes: that of variational inequalities, which is concerned with convex energy functionals (potentials), and that of hemivariational inequalities, which is concerned with nonsmooth and nonconvex energy functionals (superpotentials). Through the formulation of hemivariational inequalities, problems involving nonmonotone, nonsmooth, and multivalued constitutive laws, forces, and boundary conditions can be treated successfully. During the last three decades, hemivariational inequalities were shown to be very useful across a wide variety of disciplines, ranging from nonsmooth mechanics, physics, and engineering, to economics. However, relatively little work on the numerical analysis of hemivariational inequalities has been done. In this research project, a comprehensive theory will be developed for the numerical solution of various hemivariational inequalities, including several families of elliptic, parabolic, and hyperbolic hemivariational inequalities. For each family of hemivariational inequalities, numerical schemes will be introduced based on the finite element method for spatial discretization and finite differences for temporal discretization. Convergence of the numerical solutions will be shown under the basic solution regularity, and error estimates will be derived under appropriate solution regularity assumptions. The error estimates will be of optimal order when linear elements are used. Numerical experiments will be performed to illustrate convergence orders predicted by the theory. Results from this project (such as a posteriori error analysis, adaptive algorithms, and discontinuous Galerkin methods) will form a solid foundation for further developing numerical methods to solve hemivariational inequalities.
物理科学和工程学中的某些系统不能用数学方程来描述,而是用更复杂的关系来描述,称为不等式(指出一个量大于或小于另一个量)。 以数值方式求解不等式系统可能非常具有挑战性。该研究项目旨在开发严格而全面的数学理论以及可靠且高效的数值方法,用于半变分不等式的数值求解。除了计算数学方面取得的进展外,该研究还将通过应用于井下泵送系统分析对石油工业产生影响。石油工业使用数值模拟根据测量的表面条件推断井下油泵的条件。对于斜井(非垂直),可靠的模拟方法尚未开发出来,主要是由于斜井中复杂的摩擦和动力学。适当的模型可以以半变分不等式的形式建立;该研究项目预计将有助于进行实用的数值模拟,以诊断斜井中的油泵状况。与石油行业研究人员的合作将确保新的数学结果转化为应用。该项目的结果预计将有助于正确控制井下油泵,以节省能源并避免泵损坏。 研究生将积极参与研究的各个方面,从而接受高水平数学和数值方法的培训,以解决应用中具有挑战性和重要的问题。力学中的不等式问题可分为两大类:变分不等式,涉及凸能量泛函(势);半变分不等式,涉及非光滑和非凸能量泛函(超势)。通过半变分不等式的表述,可以成功地处理涉及非单调、非光滑和多值本构定律、力和边界条件的问题。在过去的三十年中,半变分不等式被证明在从非光滑力学、物理学、工程学到经济学等各种学科中都非常有用。然而,对半变分不等式的数值分析所做的工作相对较少。在这个研究项目中,将开发一种综合理论来解决各种半变分不等式的数值解,包括椭圆、抛物线和双曲半变分不等式的几个族。对于每族半变分不等式,将基于空间离散的有限元方法和时间离散的有限差分引入数值格式。在基本解规律下将显示数值解的收敛性,并在适当的解规律假设下导出误差估计。当使用线性元素时,误差估计将具有最佳阶数。将进行数值实验来说明理论预测的收敛阶数。该项目的结果(例如后验误差分析、自适应算法和不连续伽辽金方法)将为进一步开发解决半变分不等式的数值方法奠定坚实的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weimin Han其他文献
C0 Discontinuous Galerkin Methods for a Plate Frictional Contact Problem
求解板摩擦接触问题的 C0 间断伽辽金法
- DOI:
10.4208/jcm.1711-m2017-0187 - 发表时间:
2019-06 - 期刊:
- 影响因子:0.9
- 作者:
Fei Wang;Tianyi Zhang;Weimin Han - 通讯作者:
Weimin Han
The Nonconforming Virtual Element Method for a Stationary Stokes Hemivariational Inequality with Slip Boundary Condition
具有滑移边界条件的稳态Stokes半变分不等式的非协调虚元法
- DOI:
10.1007/s10915-020-01333-7 - 发表时间:
2020-11 - 期刊:
- 影响因子:2.5
- 作者:
Min Ling;Fei Wang;Weimin Han - 通讯作者:
Weimin Han
Smoothing quadratic regularization method for hemivariational inequalities
半变分不等式的平滑二次正则化方法
- DOI:
10.1080/02331934.2020.1712393 - 发表时间:
- 期刊:
- 影响因子:2.2
- 作者:
Yanfang Zhang;Yuhong Dai;Weimin Han;Zhibao Li - 通讯作者:
Zhibao Li
Discontinuous Galerkin finite element methods for stationary Navier-Stokes problem with a nonlinear slip boundary condition of friction type
具有摩擦型非线性滑移边界条件的平稳纳维-斯托克斯问题的间断伽辽金有限元法
- DOI:
- 发表时间:
- 期刊:
- 影响因子:2.5
- 作者:
Feifei Jing;Weimin Han;Wenjing Yan;Fei Wang - 通讯作者:
Fei Wang
Analysis of an a posteriori error estimator for a variational inequality governed by the Stokes equations
斯托克斯方程控制的变分不等式的后验误差估计器分析
- DOI:
10.1016/j.cam.2020.112721 - 发表时间:
2020-07 - 期刊:
- 影响因子:2.4
- 作者:
Feifei Jing;Weimin Han;Yongchao Zhang;Wenjing Yan - 通讯作者:
Wenjing Yan
Weimin Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weimin Han', 18)}}的其他基金
Conference: The Midwest Numerical Analysis Day 2024
会议:2024 年中西部数值分析日
- 批准号:
2331059 - 财政年份:2023
- 资助金额:
$ 16.78万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Numerical Methods for Nonlinear Elliptic Equations - Spring 2007
CBMS 数学科学区域会议 - 非线性椭圆方程的数值方法 - 2007 年春季
- 批准号:
0630571 - 财政年份:2007
- 资助金额:
$ 16.78万 - 项目类别:
Standard Grant
Midwest Numerical Analysis Conference
中西部数值分析会议
- 批准号:
0439073 - 财政年份:2004
- 资助金额:
$ 16.78万 - 项目类别:
Standard Grant
A Posteriori Error Analysis and Adaptive Algorithms for Variational Inequalities
变分不等式的后验误差分析和自适应算法
- 批准号:
0106781 - 财政年份:2001
- 资助金额:
$ 16.78万 - 项目类别:
Standard Grant
OPAAL: Optimized Meshless Algorithms for Seamless Integration of CAD, Simulation and Design
OPAAL:优化的无网格算法,用于 CAD、仿真和设计的无缝集成
- 批准号:
9874015 - 财政年份:1998
- 资助金额:
$ 16.78万 - 项目类别:
Continuing Grant
相似海外基金
Rural Co-Design and Collaboration: Maximising Rural Community Assets to Reduce Place-Based Health Inequalities
农村共同设计与协作:最大化农村社区资产以减少基于地点的健康不平等
- 批准号:
AH/Z505559/1 - 财政年份:2024
- 资助金额:
$ 16.78万 - 项目类别:
Research Grant
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 16.78万 - 项目类别:
National Partnership to tackle Health Inequalities in Coastal Communities
国家伙伴关系解决沿海社区的健康不平等问题
- 批准号:
AH/Z505419/1 - 财政年份:2024
- 资助金额:
$ 16.78万 - 项目类别:
Research Grant
Analysing Earnings from Creative Education and Creative Work: Decomposing University, Industry and Social Inequalities.
分析创意教育和创意工作的收入:分解大学、工业和社会不平等。
- 批准号:
ES/Z502455/1 - 财政年份:2024
- 资助金额:
$ 16.78万 - 项目类别:
Fellowship
Bridging the Gender Data Gap: Using Census Data to Understand Gender Inequalities Across the UK
缩小性别数据差距:利用人口普查数据了解英国各地的性别不平等
- 批准号:
ES/Z502753/1 - 财政年份:2024
- 资助金额:
$ 16.78万 - 项目类别:
Research Grant
What are the implications of health inequalities such as parental education and household income in BAME 11-16 year old's mental health in Wales
父母教育和家庭收入等健康不平等对威尔士 BAME 11-16 岁心理健康有何影响
- 批准号:
2875399 - 财政年份:2024
- 资助金额:
$ 16.78万 - 项目类别:
Studentship
ReHousIn - Contextualized pathways to reduce housing inequalities in the green and digital transition
ReHousIn - 减少绿色和数字转型中住房不平等的情境化途径
- 批准号:
10092240 - 财政年份:2024
- 资助金额:
$ 16.78万 - 项目类别:
EU-Funded
Making Every Community Asset Count: Improving Health and Reducing Inequalities for People Experiencing Homelessness
让每一项社区资产发挥作用:改善无家可归者的健康并减少不平等
- 批准号:
AH/Z505389/1 - 财政年份:2024
- 资助金额:
$ 16.78万 - 项目类别:
Research Grant
Tackling Health Inequalities with and for the Deaf BSL-Using Communities in Wales
与威尔士使用 BSL 的聋人社区一起解决健康不平等问题
- 批准号:
AH/Z505432/1 - 财政年份:2024
- 资助金额:
$ 16.78万 - 项目类别:
Research Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 16.78万 - 项目类别:
Research Grant














{{item.name}}会员




