The Best of Both: Toward a hybrid discrete and continuum multiscale platelet aggregation and coagulation model

两者的优点:建立混合离散和连续多尺度血小板聚集和凝血模型

基本信息

  • 批准号:
    1521748
  • 负责人:
  • 金额:
    $ 44.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

This project brings together computational scientists and mathematical modelers to solve a fundamental multifaceted multiscale problem in human physiology, namely understanding the platelet aggregation and coagulation (PAC) processes that comprise blood clotting. Over the past two decades, mathematical biology experts, including the current investigators, have worked to apply sound mathematical modeling principles and computational methods to attempt to dissect the complex interactions that occur within the platelet aggregation and coagulation process - fluid-structure interactions, mechanical-chemical interactions, and structure-structure interactions, to name a few. The complexity of this problem is due to its multiscale nature in both space and time, the complex disparate physical and chemical processes involved, as well as the challenge of attempting to model processes for which experimental validation is difficult. Over recent years, the experimental world has made significant advances in accumulating data that might both help us model the PAC cascade more faithfully, and allow us to predict its pathological deviations. The challenge is in connecting these two worlds and this project has as its goal employed modern computing concepts (numerical and algorithmic) to meet this challenge. While this project focuses on the PAC cascade, it will also have impact in a wide range of multiscale, multidiscipline applications such as chemical engineering and material science.The physiological time scale for PAC is on the order of minutes. To date, the only model able to simulate the entire PAC process over such time scales is a meso-scale (continuum) model developed by co-PI Fogelson and collaborators. This capability comes at the cost of coarse-graining the geometry and mechanics of the PAC process. The co-PI has also developed a fine-grained model of platelet aggregation that is at the forefront of platelet modeling. However, while conceptually faithful to the mechanics of the PAC process and the geometric intricacies of the developing aggregates, the fine-grained model does not yet contain treatment of the chemical processes of coagulation. Further, this model is computationally expensive and can, in a reasonable amount of time, only simulate a small fraction of the physical time that the meso-scale model can. Consequently, the goals of this project are two-fold: first, to extend the simulation capabilities of the fine-grained model both in terms of conceptual fidelity to the PAC cascade, and also in terms of computational efficiency by implementation on hybrid (CPU/GPU) architectures; and second, to cross-validate in the multiscale context current meso-scale and the extended fine-scale PAC models. Accomplishing these goals is critical to our longer-term research objective of developing hybrid multiscale models - enabled by current and future experimental data - that combine the best features of both these models.
该项目汇集了计算科学家和数学建模者,以解决人类生理学中的一个基本的多方面多尺度问题,即理解包括血液凝固的血小板聚集和凝血(PAC)过程。在过去的二十年里,数学生物学专家,包括目前的研究人员,一直致力于应用合理的数学建模原理和计算方法,试图剖析血小板聚集和凝血过程中发生的复杂相互作用-流体-结构相互作用,机械-化学相互作用和结构-结构相互作用,仅举几例。这个问题的复杂性是由于其在空间和时间上的多尺度性质,所涉及的复杂的不同的物理和化学过程,以及试图模拟实验验证困难的过程的挑战。近年来,实验界在积累数据方面取得了重大进展,这些数据既可以帮助我们更忠实地模拟PAC级联反应,也可以让我们预测其病理学偏差。挑战在于连接这两个世界,该项目的目标是采用现代计算概念(数值和算法)来应对这一挑战。虽然该项目的重点是PAC级联,但它也将在化学工程和材料科学等广泛的多尺度,多学科应用中产生影响。PAC的生理时间尺度为分钟。迄今为止,唯一能够模拟整个PAC过程的模型是由共同PI Fogelson和合作者开发的中尺度(连续)模型。这种能力是以PAC工艺的几何形状和机械结构粗粒化为代价的。co-PI还开发了血小板聚集的细粒度模型,该模型处于血小板建模的最前沿。然而,虽然在概念上忠实于PAC过程的力学和发展中的聚集体的几何复杂性,细粒度模型还不包含混凝的化学过程的治疗。此外,该模型在计算上是昂贵的,并且在合理的时间量内,只能模拟中尺度模型所能模拟的物理时间的一小部分。因此,这个项目的目标是双重的:第一,扩展的细粒度模型的模拟能力,无论是在概念上的保真度PAC级联,也在计算效率方面的混合(CPU/GPU)架构上的实现;和第二,交叉验证在多尺度上下文中当前的中尺度和扩展的细尺度PAC模型。实现这些目标对于我们开发混合多尺度模型的长期研究目标至关重要-通过当前和未来的实验数据实现-联合收割机结合了这两种模型的最佳功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Kirby其他文献

The Beneficiary Pays Principle and Climate Change
受益人付费原则与气候变化
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Robert Kirby
  • 通讯作者:
    Robert Kirby
Trends in the diagnosis of synchronous bilateral breast cancer
  • DOI:
    10.1016/j.ejso.2018.02.201
  • 发表时间:
    2018-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yan Yu Tan;Mihir Chandarana;Frank Liaw;Sadaf Jafferbhoy;Sekhar Marla;Robert Kirby;Sankaran Narayanan;Soni Soumian
  • 通讯作者:
    Soni Soumian
Optimizing VLSI Implementation with Reinforcement Learning - ICCAD Special Session Paper
使用强化学习优化 VLSI 实施 - ICCAD 特别会议论文
An Audit on Oncological Safety with Magseed Localised Breast Conserving Surgery
  • DOI:
    10.1007/s13193-022-01531-9
  • 发表时间:
    2022-04-05
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Kirti Katherine Kabeer;S. Manoj Gowda;Zatinahhayu Mohd-Isa;Megan Jane Renner Thomas;Vallipuram Gopalan;Sadaf Jafferbhoy;Soni Soumian;Sankaran Narayanan;Robert Kirby;Sekhar Marla
  • 通讯作者:
    Sekhar Marla
P115. The cytokeratin-19 mRNA copy number from one step nucleic acid amplification (OSNA) analysis of sentinel lymph nodes can be used in multiple ways to predict further axillary lymph node metastasis in patients with invasive breast cancer
  • DOI:
    10.1016/j.ejso.2015.03.153
  • 发表时间:
    2015-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ibrahim Natalwala;Robert Kirby;Soni Soumian;Hammond Lisette;Mark Stephens;Sankaran Narayanan
  • 通讯作者:
    Sankaran Narayanan

Robert Kirby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Kirby', 18)}}的其他基金

Collaborative Research: Transforming Serendipity Elements from Theory to Practice
合作研究:将意外元素从理论转化为实践
  • 批准号:
    1912653
  • 财政年份:
    2019
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Transform-to-Perform: Languages, Algorithms, and Solvers for Nonlocal Operators
SHF:小型:协作研究:从转换到执行:非本地算子的语言、算法和求解器
  • 批准号:
    1909176
  • 财政年份:
    2019
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiphysics modeling and analysis of thermo-visco-acoustic equations with applications to the design of trace gas sensors
合作研究:热粘声方程的多物理场建模和分析及其在痕量气体传感器设计中的应用
  • 批准号:
    1620222
  • 财政年份:
    2016
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
Small: Collaborative Research: Transform-to-Perform: Languages, Algorithms, and Code Transformations for High-Performance FEM
小:协作研究:从转换到执行:高性能 FEM 的语言、算法和代码转换
  • 批准号:
    1525697
  • 财政年份:
    2015
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
SI2-SSE: A GPU-Enabled Toolbox for Solving Hamilton-Jacobi and Level Set Equations on Unstructured Meshes
SI2-SSE:用于求解非结构化网格上的 Hamilton-Jacobi 和水平集方程的 GPU 工具箱
  • 批准号:
    1148291
  • 财政年份:
    2012
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
AF: Small: Metanumerical Computing for Emerging Architectures: Automated Embedded Algorithms for Partial Differential Equations on Multicore Platforms
AF:小型:新兴架构的元数值计算:多核平台上偏微分方程的自动化嵌入式算法
  • 批准号:
    1325480
  • 财政年份:
    2012
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
AF: Small: Metanumerical Computing for Emerging Architectures: Automated Embedded Algorithms for Partial Differential Equations on Multicore Platforms
AF:小型:新兴架构的元数值计算:多核平台上偏微分方程的自动化嵌入式算法
  • 批准号:
    1117794
  • 财政年份:
    2011
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
GV: Small: Collaborative Research: Analysis and Visualization of Stochastic Simulation Solutions
GV:小型:协作研究:随机仿真解决方案的分析和可视化
  • 批准号:
    0914564
  • 财政年份:
    2009
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
Automated Intrusive Algorithms for Numerical Simulation of Partial Differential Equations via Software-Based Frechet Differentiation
通过基于软件的 Frechet 微分进行偏微分方程数值模拟的自动侵入算法
  • 批准号:
    0830655
  • 财政年份:
    2008
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
CAREER: Quantifying and Controlling Error and Uncertainty in Computational Inverse Problems
职业:量化和控制计算逆问题中的误差和不确定性
  • 批准号:
    0347791
  • 财政年份:
    2004
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Continuing Grant

相似海外基金

An innovative hybrid infrastructure system delivering both electric and hydrogen for vessel fast charging/refuelling using off grid renewable energy and onsite wastewater.
一种创新的混合基础设施系统,利用离网可再生能源和现场废水,为船舶快速充电/加油提供电力和氢气。
  • 批准号:
    10099143
  • 财政年份:
    2024
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Collaborative R&D
Language teaching, investigating the effects of 1+2 on both teaching staff and pupils, at a local and national level
语言教学,调查 1 2 对地方和国家层面的教职员工和学生的影响
  • 批准号:
    2901306
  • 财政年份:
    2024
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Studentship
Tracking shallow and dynamic chemoattractant gradients - how yeast cells amplify both internal and external signals to locate mating partners
跟踪浅层和动态趋化剂梯度——酵母细胞如何放大内部和外部信号来定位交配伙伴
  • 批准号:
    2341919
  • 财政年份:
    2024
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Continuing Grant
Developing a continuous quality improvement system to enhance both clients and caregives well-being
开发持续的质量改进体系,以提高客户和护理人员的福祉
  • 批准号:
    23H00444
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Innovative smartphone psychotherapy targeting both fear of recurrence and persistent chronic pain after curative cancer resection
创新的智能手机心理疗法针对治愈性癌症切除术后复发的恐惧和持续的慢性疼痛
  • 批准号:
    23H01041
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of bone graft substitutes with both osteogenic potential and high strength
开发兼具成骨潜力和高强度的骨移植替代物
  • 批准号:
    23K08604
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a novel therapeutic drug targeting both MDM4 and PKC, critical points in uveal malignant melanoma
开发针对葡萄膜恶性黑色素瘤关键点 MDM4 和 PKC 的新型治疗药物
  • 批准号:
    23K09020
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Next generation vaccines for bovine respiratory disease (BRD) complex utilizing virus vaccine vectors to target both bacterial and viral pathogens.
下一代牛呼吸道疾病 (BRD) 疫苗利用病毒疫苗载体来靶向细菌和病毒病原体。
  • 批准号:
    BB/X017532/1
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Research Grant
Creating therapeutic strategies targeting both aldosterone and AGEs-RAGE axis for stopping kidney diseases progression
制定针对醛固酮和 AGEs-RAGE 轴的治疗策略,以阻止肾脏疾病的进展
  • 批准号:
    23K15240
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Evaluation of countermeasures against heat illness from both hardware and software perspectives using satellite remote sensing and human flow data
利用卫星遥感和人流数据从硬件和软件角度评估中暑对策
  • 批准号:
    23K13457
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了