Automated Intrusive Algorithms for Numerical Simulation of Partial Differential Equations via Software-Based Frechet Differentiation
通过基于软件的 Frechet 微分进行偏微分方程数值模拟的自动侵入算法
基本信息
- 批准号:0830655
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-10-01 至 2011-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract: Automated intrusive algorithms for numericalsimulation of partial differential equations via software-basedFrechet differentiation Computers were invented to automate tedious and error-prone numericalcomputations; ironically, programming computers is itself a tediousand error-prone task. Given the importance and expense of developingscientific simulation programs, it is worth studying whether computerscan improve the development, as well as the execution, of theseprograms. This project focuses on the open-source software Sundance,which automates transition from high-level mathematical abstractionsto high-performance, parallel partial differential equation (PDE)simulation code, freeing users from the burden of low-levelprogramming. This approach can reduce simulator development time frommonths or years to days or even hours. Less obvious, but equallyimportant, benefits of basing software firmly on mathematicalabstractions are that internal performance improvements can beautomated, and that intrusive algorithms -- algorithms that requiretransformation of the equation set to produce nonstandard operators --can be implemented much more easily because such transformations canbe carried out automatically.This is enabled by formulating programming tasks as mathematicalproblems whose solutions are then automated. Central to this is a theorem establishing Frechet differentiation as a ``bridge'' betweenhigh-level symbolic programming and high-performance numericalcomputing. Previous work has laid the foundations for this; thisextends those results work to other aspects of PDE simulation and tonon-PDE paradigms such as density functional theory (DFT), and investigates intrusive preconditioners for coupled multiphysicsproblems. The combination of automatic high performance andthe ready availability of efficient intrusive algorithms forpreconditioning, sensitivity analysis, and PDE-constrainedoptimization makes it possible for a high-level, general-purpose toolsuch as Sundance to actually outperform hand-coded special-purposesimulators. The ready availability of advanced optimizationalgorithms with finite element discretizations for nonlinear coupledsystems, all with efficient implementation and a short developmentcycle, will be transformative to how computational scientists work.
摘要:基于软件的frechet微分计算机用于偏微分方程数值模拟的自动侵入算法是为了自动化繁琐且容易出错的数值计算而发明的。具有讽刺意味的是,计算机编程本身就是一项单调乏味、容易出错的任务。考虑到开发科学模拟程序的重要性和成本,计算机是否能改善这些程序的开发和执行是值得研究的。这个项目的重点是开源软件Sundance,它可以自动从高级数学抽象转换到高性能的并行偏微分方程(PDE)模拟代码,将用户从低级编程的负担中解放出来。这种方法可以将模拟器的开发时间从几个月或几年缩短到几天甚至几个小时。不太明显,但同样重要的是,将软件牢固地建立在数学抽象上的好处是,内部性能改进可以自动化,而且侵入式算法——需要对方程集进行转换以产生非标准运算符的算法——可以更容易地实现,因为这种转换可以自动进行。这是通过将编程任务表述为数学问题,然后将其解决方案自动化来实现的。其核心是一个定理,将Frechet微分建立为高级符号编程和高性能数值计算之间的“桥梁”。之前的工作已经为此奠定了基础;这将这些结果扩展到PDE模拟和非PDE范式(如密度泛函理论(DFT))的其他方面,并研究耦合多物理场问题的侵入性前置条件。自动高性能和预先调节、灵敏度分析和pde约束优化的有效侵入算法的组合使得像Sundance这样的高级通用工具实际上优于手工编码的专用模拟器成为可能。具有非线性耦合系统的有限元离散化的先进优化算法的现成可用性,所有这些都具有有效的实现和较短的开发周期,将改变计算科学家的工作方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Kirby其他文献
The Beneficiary Pays Principle and Climate Change
受益人付费原则与气候变化
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Robert Kirby - 通讯作者:
Robert Kirby
Trends in the diagnosis of synchronous bilateral breast cancer
- DOI:
10.1016/j.ejso.2018.02.201 - 发表时间:
2018-06-01 - 期刊:
- 影响因子:
- 作者:
Yan Yu Tan;Mihir Chandarana;Frank Liaw;Sadaf Jafferbhoy;Sekhar Marla;Robert Kirby;Sankaran Narayanan;Soni Soumian - 通讯作者:
Soni Soumian
Optimizing VLSI Implementation with Reinforcement Learning - ICCAD Special Session Paper
使用强化学习优化 VLSI 实施 - ICCAD 特别会议论文
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Haoxing Ren;Saad Godil;Brucek Khailany;Robert Kirby;Haiguang Liao;S. Nath;Jonathan Raiman;Rajarshi Roy - 通讯作者:
Rajarshi Roy
P115. The cytokeratin-19 mRNA copy number from one step nucleic acid amplification (OSNA) analysis of sentinel lymph nodes can be used in multiple ways to predict further axillary lymph node metastasis in patients with invasive breast cancer
- DOI:
10.1016/j.ejso.2015.03.153 - 发表时间:
2015-06-01 - 期刊:
- 影响因子:
- 作者:
Ibrahim Natalwala;Robert Kirby;Soni Soumian;Hammond Lisette;Mark Stephens;Sankaran Narayanan - 通讯作者:
Sankaran Narayanan
P072. Synchronous cancers following MRI in Neoadjuvant Chemotherapy
- DOI:
10.1016/j.ejso.2019.01.094 - 发表时间:
2019-05-01 - 期刊:
- 影响因子:
- 作者:
Sadaf Jafferbhoy;Kirthi Kabeer;Mihir Chandarana;Robert Kirby;Sekhar Marla;Sankaran Narayanan;Soni Soumian - 通讯作者:
Soni Soumian
Robert Kirby的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Kirby', 18)}}的其他基金
Collaborative Research: Transforming Serendipity Elements from Theory to Practice
合作研究:将意外元素从理论转化为实践
- 批准号:
1912653 - 财政年份:2019
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Transform-to-Perform: Languages, Algorithms, and Solvers for Nonlocal Operators
SHF:小型:协作研究:从转换到执行:非本地算子的语言、算法和求解器
- 批准号:
1909176 - 财政年份:2019
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Multiphysics modeling and analysis of thermo-visco-acoustic equations with applications to the design of trace gas sensors
合作研究:热粘声方程的多物理场建模和分析及其在痕量气体传感器设计中的应用
- 批准号:
1620222 - 财政年份:2016
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
The Best of Both: Toward a hybrid discrete and continuum multiscale platelet aggregation and coagulation model
两者的优点:建立混合离散和连续多尺度血小板聚集和凝血模型
- 批准号:
1521748 - 财政年份:2015
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Small: Collaborative Research: Transform-to-Perform: Languages, Algorithms, and Code Transformations for High-Performance FEM
小:协作研究:从转换到执行:高性能 FEM 的语言、算法和代码转换
- 批准号:
1525697 - 财政年份:2015
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
SI2-SSE: A GPU-Enabled Toolbox for Solving Hamilton-Jacobi and Level Set Equations on Unstructured Meshes
SI2-SSE:用于求解非结构化网格上的 Hamilton-Jacobi 和水平集方程的 GPU 工具箱
- 批准号:
1148291 - 财政年份:2012
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
AF: Small: Metanumerical Computing for Emerging Architectures: Automated Embedded Algorithms for Partial Differential Equations on Multicore Platforms
AF:小型:新兴架构的元数值计算:多核平台上偏微分方程的自动化嵌入式算法
- 批准号:
1325480 - 财政年份:2012
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
AF: Small: Metanumerical Computing for Emerging Architectures: Automated Embedded Algorithms for Partial Differential Equations on Multicore Platforms
AF:小型:新兴架构的元数值计算:多核平台上偏微分方程的自动化嵌入式算法
- 批准号:
1117794 - 财政年份:2011
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
GV: Small: Collaborative Research: Analysis and Visualization of Stochastic Simulation Solutions
GV:小型:协作研究:随机仿真解决方案的分析和可视化
- 批准号:
0914564 - 财政年份:2009
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
CAREER: Quantifying and Controlling Error and Uncertainty in Computational Inverse Problems
职业:量化和控制计算逆问题中的误差和不确定性
- 批准号:
0347791 - 财政年份:2004
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: Using K-feldspar megacryst and mineral inclusion T-X-t histories to assess batholith growth and evolution in the Tuolumne intrusive complex, CA
合作研究:利用钾长石巨晶和矿物包裹体 T-X-t 历史来评估加利福尼亚州图奥勒米侵入岩杂岩的岩基生长和演化
- 批准号:
2223333 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Using K-feldspar megacryst and mineral inclusion T-X-t histories to assess batholith growth and evolution in the Tuolumne intrusive complex, CA
合作研究:RUI:利用钾长石巨晶和矿物包裹体 T-X-t 历史来评估加利福尼亚州图奥勒米侵入岩杂岩的岩基生长和演化
- 批准号:
2223332 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
I-Corps: Personalized AI-Driven Training for Construction Workers with Non-Intrusive Measures
I-Corps:采用非侵入性措施为建筑工人提供个性化人工智能驱动培训
- 批准号:
2330278 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
I-Corps: Non-Intrusive Cooling System Fault Detection Using Deep Learning of Acoustic Emissions
I-Corps:使用声发射深度学习进行非侵入式冷却系统故障检测
- 批准号:
2212002 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Intrusive Magmatism and Effects on Magnetic Field and Atmosphere Evolution
侵入岩浆作用及其对磁场和大气演化的影响
- 批准号:
568279-2022 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Postdoctoral Fellowships
Outline the nature and controls on nickel, cobalt, and PGE mineralization at the Canadian Nickel Company Crawford Intrusive Complex.
概述加拿大镍公司克劳福德侵入岩体中镍、钴和铂族元素矿化的性质和控制。
- 批准号:
572340-2022 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Non-Intrusive CO2 Flow Measurement
非侵入式二氧化碳流量测量
- 批准号:
10022728 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Collaborative R&D
Non--Intrusive Load Monitoring
非侵入式负载监控
- 批准号:
RGPIN-2018-06192 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
Movement intention detection for intuitive and non-intrusive prosthetic arm control
运动意图检测,实现直观、非侵入性的假肢控制
- 批准号:
RGPIN-2020-05525 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
Non--Intrusive Load Monitoring
非侵入式负载监控
- 批准号:
RGPIN-2018-06192 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual