Transforming data access and reseach cyber-infrastructure within a tropical field station network
转变热带野外站网络内的数据访问和研究网络基础设施
基本信息
- 批准号:1522532
- 负责人:
- 金额:$ 18.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The role of field research stations is quickly evolving. Stations are morphing from being facilities that provided infrastructure for field-based research to proactive entities that actively direct research towards emerging areas of knowledge, generate baseline data through biophysical monitoring, and compile, archive, and facilitate synthesis and reuse of data generated in their midst. This new profile increases the effectiveness of field stations as research centers, because they: (a) provide basic long-term monitoring of biophysical data (e.g., through meteorological stations), which allows both researchers to understand their observed patterns and station staff to document any changes in their biophysical conditions, (b) focus research efforts in critical areas of knowledge and reduce duplication of efforts, and (c) act as a data repository to ensure that long-term data that is collected by the individual efforts of researchers and research teams are not only secured, but available for further reuse. This profile responds to two critical drivers: the urgent need to understand how our world is changing and the need to optimize research resources. This project provides the technological infrastructure that will allow three cutting-edge tropical field research stations to update and upgrade their biophysical monitoring equipment and to establish a Tropical node of DataONE. The upgraded biophysical monitoring equipment will allow the stations to more reliably track environmental variables, such as air and soil temperature and moisture, rainfall, solar intensity, and available water. The Tropical node of DataONE will allow the Organization for Tropical Studies to become the first tropical field station network to proactively retrieve and store data collected over 50 years so that it will be available to the whole scientific community for analyzing temporal and historical trends, measuring changes in the last half century, and projecting the fate of tropical forests. Despite the deluge of information that has accumulated among field stations, these data are not readily available (Borgman et al. 2007). Most historical ecological field data are scattered and inaccessible, unintelligible (no metadata) or dispersed across platforms and digital formats hindering their reuse and synthesis (Heidorn 2008). Such dark data are at risk of being lost forever when scientists retire or die. Also, most field stations institutionally monitor a suite of biogeophysical variables (such as meteorological data) as a reference for the research community that they serve, but often these long-term data series are inconsistently collected and maintained and hard to access. Changing norms in data sharing and an increased scientific need for historical data on natural systems impose the responsibility on field stations to recover and archive dark data from historical field studies and to standardize, update, and make available past and current biogeophysical monitoring data. This project enables the Organization for Tropical Studies (OTS) to establish an Institutional Data Repository for data generated at its three field stations in Costa Rica for almost 50 years. The data repository will be part of DataONE network and will archive and make available biogeophysical monitoring data collected institutionally (e.g., meteorological and hydrological data, GIS files, and digital biological collections) as well as data collected by independent researchers who have conducted field research at the stations. The project also will allow OTS to upgrade, standardize, and automate further its meteorological stations to collect climatic and hydrological data. Both components of this project will foster field research that leverages historic data as a reference for new observations and facilitate secondary e-research on historic and current trends of terrestrial tropical ecosystems. Such research will greatly expand the ability of scientists to assess impacts of global change on tropical systems and to improve the representation of key tropical terrestrial ecosystem processes in earth system models. This project will set a new standard for open access of data and expand research opportunities for the broader scientific community. Furthermore, the data will enhance the opportunities for new generations of young scientists who conduct research at the stations (as research assistants, through fellowships, or on site-based REU programs) or who participate in OTS field-courses centered at the stations (through OTS graduate and undergraduate programs) or who visit the stations independently through faculty-led educational experiences. For more information about the Organization for Tropical Studies, please see http://www.ots.ac.cr/. When available, data may be accessed through DataONE at https://www.dataone.org/.
实地考察站的作用正在迅速演变。空间站正在从为实地研究提供基础设施的设施转变为积极主动的实体,这些实体积极地将研究引向新兴知识领域,通过生物物理监测产生基线数据,并对其中产生的数据进行汇编、存档和促进合成和再利用。这一新的概况提高了外地站作为研究中心的效力,因为它们:(A)提供生物物理数据的基本长期监测(例如,通过气象站),这使研究人员能够了解其观察到的模式,并使空间站工作人员能够记录其生物物理条件的任何变化;(B)将研究工作集中在关键知识领域,减少重复工作;以及(C)充当数据储存库,确保研究人员和研究小组通过个人努力收集的长期数据不仅得到保护,而且可供进一步重复使用。这份简介回应了两个关键驱动因素:迫切需要了解我们的世界正在如何变化,以及需要优化研究资源。该项目提供的技术基础设施将使三个先进的热带实地考察站能够更新和升级其生物物理监测设备,并建立一个热带数据网络节点。升级后的生物物理监测设备将使空间站能够更可靠地跟踪环境变量,如空气和土壤温度和湿度、降雨量、太阳强度和可用水。DataOne的热带节点将使热带研究组织成为第一个主动检索和存储50年来收集的数据的热带野外站网络,以便向整个科学界提供这些数据,以分析时间和历史趋势,衡量过去半个世纪的变化,并预测热带森林的命运。尽管外勤站之间积累了大量信息,但这些数据并不容易获得(Borgman等人。2007)。大多数历史生态领域数据都是分散的、不可访问的、不可理解的(没有元数据),或者分散在平台和数字格式上,阻碍了它们的再利用和综合(Heidorn 2008)。当科学家退休或去世时,这些黑暗的数据有可能永远丢失。此外,大多数外勤站在制度上监测一套生物地球物理变量(如气象数据),作为其服务的研究界的参考,但这些长期数据系列往往收集和维护不一致,难以获取。数据共享方面不断变化的规范以及对自然系统历史数据的科学需求日益增加,这就要求外勤站有责任恢复和存档来自历史实地研究的黑暗数据,并标准化、更新和提供过去和现在的生物地球物理监测数据。该项目使热带研究组织能够为其在哥斯达黎加的三个实地站近50年来产生的数据建立一个机构数据储存库。数据储存库将是DataONE网络的一部分,将存档和提供机构收集的生物地球物理监测数据(例如,气象和水文数据、地理信息系统文件和数字生物收集),以及由在空间站进行实地研究的独立研究人员收集的数据。该项目还将使OTS能够升级、标准化和进一步实现其气象站的自动化,以收集气候和水文数据。该项目的两个组成部分都将促进实地研究,利用历史数据作为新观测的参考,并促进对陆地热带生态系统历史和当前趋势的二级电子研究。这种研究将极大地扩大科学家评估全球变化对热带系统的影响的能力,并改进地球系统模型中关键的热带陆地生态系统过程的表现。该项目将为开放获取数据设定新的标准,并为更广泛的科学界扩大研究机会。此外,这些数据将增加新一代年轻科学家的机会,他们在空间站进行研究(作为研究助理,通过奖学金或基于现场的REU计划),或参加以空间站为中心的OTS实地课程(通过OTS研究生和本科课程),或通过教员指导的教育经验独立访问空间站。有关热带研究组织的更多信息,请访问http://www.ots.ac.cr/.。当数据可用时,可以通过https://www.dataone.org/.上的DataOne访问数据
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carolina Murcia其他文献
Comparative habitat susceptibility to invasion by Chinese ash (Fraxinus chinensis: Oleaceae) in a tropical Andean landscape
- DOI:
10.1007/s10530-004-2576-4 - 发表时间:
2005-05-01 - 期刊:
- 影响因子:2.600
- 作者:
Carlos A. García-Robledo;Carolina Murcia - 通讯作者:
Carolina Murcia
Carolina Murcia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于高频信息下高维波动率矩阵估计及应用
- 批准号:71901118
- 批准年份:2019
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
半参数空间自回归面板模型的有效估计与应用研究
- 批准号:71961011
- 批准年份:2019
- 资助金额:16.0 万元
- 项目类别:地区科学基金项目
高频数据波动率统计推断、预测与应用
- 批准号:71971118
- 批准年份:2019
- 资助金额:50.0 万元
- 项目类别:面上项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
体数据表达与绘制的新方法研究
- 批准号:61170206
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
一类新Regime-Switching模型及其在金融建模中的应用研究
- 批准号:11061041
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:地区科学基金项目
相似海外基金
End-to-End Solar Borehole Business Models and Data Collection to Extend Sustainable Access to Energy and Water in Rural Tanzania
端到端太阳能钻孔商业模式和数据收集,以扩大坦桑尼亚农村地区可持续获取能源和水的机会
- 批准号:
10074210 - 财政年份:2024
- 资助金额:
$ 18.63万 - 项目类别:
Collaborative R&D
CC* Data Storage: High-Capacity Active Archive to Enable Economical Data Access and Distribution for Illinois Researchers and the National Community
CC* 数据存储:大容量主动存档,为伊利诺伊州研究人员和国家社区提供经济的数据访问和分发
- 批准号:
2346737 - 财政年份:2024
- 资助金额:
$ 18.63万 - 项目类别:
Standard Grant
A Secure Hub for Access, Reliability, and Exchange of Data (SHARED)
用于访问、可靠性和数据交换的安全中心(共享)
- 批准号:
2346746 - 财政年份:2024
- 资助金额:
$ 18.63万 - 项目类别:
Standard Grant
PFI-TT: A Hybrid Scalable Data Management System Providing Deep Access to the Scientific Knowledge in Data Science
PFI-TT:混合可扩展数据管理系统,提供对数据科学中科学知识的深入访问
- 批准号:
2345794 - 财政年份:2024
- 资助金额:
$ 18.63万 - 项目类别:
Continuing Grant
Archer: Next-generation unstructured data access for hospitals and clinical trial sponsors, delivering efficiency, reducing costs and improving care
Archer:为医院和临床试验申办者提供下一代非结构化数据访问,提高效率、降低成本并改善护理
- 批准号:
10096804 - 财政年份:2024
- 资助金额:
$ 18.63万 - 项目类别:
Collaborative R&D
Our health counts: population-based measures of urban Indigenous health determinants, health status, and health care access across two cities in New Brunswick
我们的健康很重要:新不伦瑞克省两个城市的城市土著健康决定因素、健康状况和医疗保健获取情况的基于人口的衡量标准
- 批准号:
489076 - 财政年份:2023
- 资助金额:
$ 18.63万 - 项目类别:
Operating Grants
Effect of an educational radio campaign on contraception use in Nigeria
教育广播活动对尼日利亚避孕措施使用的影响
- 批准号:
495100 - 财政年份:2023
- 资助金额:
$ 18.63万 - 项目类别:
Operating Grants
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
2400511 - 财政年份:2023
- 资助金额:
$ 18.63万 - 项目类别:
Standard Grant